
C H A P T E R

9
Bits, Flags, Branches,

and Tables
Easing into Mainstream Assembly Coding

As you’ve seen by now, my general method for explaining things starts with
the ‘‘view from a height’’ and then moves down toward the details. That’s how
I do things because that’s how people learn: by plugging individual facts into
a larger framework that makes it clear how those facts relate to one another.
It’s possible (barely) to move from details to the big picture, but across 56 years
of beating my head against various subjects in the pursuit of knowledge, it’s
become very clear that having the overall framework in place first makes it a lot
easier to establish all those connections between facts. It’s like carefully placing
stones into a neat pile before shoveling them into a box. If the goal is to get
the stones into a box, it’s much better to have the box in place before starting
to pick up the stones.

And so it is here. The big picture is mostly in place. From now on in this
book, we’ll be looking at the details of assembly code, and seeing how they fit
into that larger view.

Bits Is Bits (and Bytes Is Bits)

Assembly language is big on bits.
Bits, after all, are what bytes are made of, and one essential assembly

language skill is building bytes and taking them apart again. A technique
called bit mapping is widely used in assembly language. Bit mapping assigns

279

280 Chapter 9 ■ Bits, Flags, Branches, and Tables

special meanings to individual bits within a byte to save space and squeeze
the last little bit of utility out of a given amount of memory.

There is a family of instructions in the x86 instruction set that enables you
to manipulate the bits within the bytes by applying Boolean logical operations
between bytes on a bit-by-bit basis. These are the bitwise logical instructions:
AND, OR, XOR, and NOT. Another family of instructions enables you to slide bits
back and forth within a single byte or word. These are the most frequently
used shift/rotate instructions: ROL, ROR, RCL, RCR, SHL, and SHR. (There are a
few others that I will not be discussing in this book.)

Bit Numbering
Dealing with bits requires that we have a way of specifying which bits we’re
dealing with. By convention, bits in assembly language are numbered, starting
from 0, at the least-significant bit in the byte, word, or other item we’re using as
a bitmap. The least-significant bit is the one with the least value in the binary
number system. It’s also the bit on the far right if you write the value down as
a binary number in the conventional manner.

I’ve shown this in Figure 9-1, for a 16-bit word. Bit numbering works exactly
the same way no matter how many bits you’re dealing with: bytes, words,
double words, or more. Bit 0 is always on the right-hand end, and the bit
numbers increase toward the left

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Least significant bitMost significant bit

Figure 9-1: Bit numbering

When you count bits, start with the bit on the right, and number them from 0.

‘‘It’s the Logical Thing to Do, Jim. . .’’
Boolean logic sounds arcane and forbidding, but remarkably, it reflects the
realities of ordinary thought and action. The Boolean operator AND, for instance,
pops up in many of the decisions you make every day of your life. For example,
to write a check that doesn’t bounce, you must have money in your checking
account AND checks in your checkbook. Neither alone will do the job. You can’t
write a check that you don’t have, and a check without money behind it will
bounce. People who live out of their checkbooks (and they always seem to end
up ahead of me in the checkout line at Safeway) must use the AND operator
frequently.

When mathematicians speak of Boolean logic, they manipulate abstract
values called True and False. The AND operator works like this. Condition1

Chapter 9 ■ Bits, Flags, Branches, and Tables 281

AND Condition2 will be considered True if both Condition1 and Condition2 are
True. If either condition is False, the result will be False.

There are in fact four different combinations of the two input values, so
logical operations between two values are usually summarized in a form called
a truth table. The truth table for the logical operator AND (not the AND instruction
yet; we’ll get to that shortly) is shown in Table 9-1.

Table 9-1: The AND Truth Table for Formal Logic

CONDITION1 OPERATOR CONDITION2 RESULT

False AND False False

False AND True False

True AND False False

True AND True True

There’s nothing mysterious about the truth table. It’s just a summary of
all possibilities of the AND operator as applied to two input conditions. The
important thing to remember about AND is that only when both input values
are True is the result also True.

That’s the way mathematicians see AND. In assembly language terms, the
AND instruction looks at two bits and yields a third bit based on the values of
the first two bits. By convention, we consider a 1 bit to be True and a 0 bit to
be False. The logic is identical; we’re just using different symbols to represent
True and False. Keeping that in mind, we can rewrite AND’s truth table to make
it more meaningful for assembly language work (see Table 9-2).

Table 9-2: The AND Truth Table for Assembly Language

BIT 1 OPERATOR BIT 2 RESULT BIT

0 AND 0 0

0 AND 1 0

1 AND 0 0

1 AND 1 1

The AND Instruction
The AND instruction embodies this concept in the x86 instruction set. The AND

instruction performs the AND logical operation on two like-size operands and

282 Chapter 9 ■ Bits, Flags, Branches, and Tables

replaces the destination operand with the result of the operation as a whole.
(Remember that the destination operand, as always, is the operand closest to
the mnemonic.) In other words, consider this instruction:

and al,bl

What will happen here is that the CPU will perform a gang of eight bitwise
AND operations on the eight bits in AL and BL. Bit 0 of AL is ANDed with bit 0 of
BL, bit 1 of AL is ANDed with bit 1 of BL, and so on. Each AND operation generates
a result bit, and that bit is placed in the destination operand (here, AL) after all
eight AND operations occur. This is a common thread among machine instruc-
tions that perform some operation on two operands and produce a result:
The result replaces the first operand (the destination operand) and not the
second!

Masking Out Bits

A major use of the AND instruction is to isolate one or more bits out of a byte
value or a word value. Isolate here simply means to set all unwanted bits to
a reliable 0 value. As an example, suppose we are interested in testing bits
4 and 5 of a value to see what those bits are. To do that, we have to be able
to ignore the other bits (bits 0 through 3 and 6 through 7), and the only way
to safely ignore bits is to set them to 0.
AND is the way to go. We set up a bit mask in which the bit numbers that we
want to inspect and test are set to 1, and the bits we wish to ignore are set to 0.
To mask out all bits but bits 4 and 5, we must set up a mask in which bits 4
and 5 are set to 1, with all other bits at 0. This mask in binary is 00110000B, or
30H. (To verify it, count the bits from the right-hand end of the binary number,
starting with 0.) This bit mask is then ANDed against the value in question.
Figure 9-2 shows this operation in action, with the 30H bit mask just described
and an initial value of 9DH.

The three binary values involved are shown laid out vertically, with the
least-significant bit (that is, the right-hand end) of each value at the top. You
should be able to trace each AND operation and verify it by looking at Table 9-2.

The end result is that all bits except bits 4 and 5 are guaranteed to be 0 and
can thus be safely ignored. Bits 4 and 5 could be either 0 or 1. (That’s why we
need to test them; we don’t know what they are.) With the initial value of 9DH,
bit 4 turns out to be a 1, and bit 5 turns out to be a 0. If the initial value were
something else, bits 4 and 5 could both be 0, both be 1, or some combination
of the two.

Don’t forget: the result of the AND instruction replaces the destination operand
after the operation is complete.

Chapter 9 ■ Bits, Flags, Branches, and Tables 283

1 0 0

0

1

1

1

0

0

1

0

0

0

1

1

0

0

0

0

0

1

0

0

0

AND

AND

AND

AND

AND

AND

AND

AND

=

=

=

=

=

=

=

=

AND AL, BL

AL : 9DH
10011101

BL : 30H
00110000

After Execution:
AL : 10H

00010000

Value Mask Result

LSB

MSB

Figure 9-2: The anatomy of an AND instruction

The OR Instruction
Closely related to the AND logical operation is OR, which, like the AND logical
operation, has an embodiment with the same name in the x86 instruction set.
Structurally, the OR instruction works identically to AND. Only its truth table is
different: While AND requires that both its operands be 1 for the result to be 1,
OR is satisfied that at least one operand has a 1 value. The truth table for OR is
shown in Table 9-3.

Table 9-3: The OR Truth Table for Assembly Language

BIT 1 OPERATOR BIT 2 RESULT BIT

0 OR 0 0

0 OR 1 1

1 OR 0 1

1 OR 1 1

Because it’s unsuitable for isolating bits, OR is used much more rarely
than AND.

284 Chapter 9 ■ Bits, Flags, Branches, and Tables

The XOR Instruction

In a class by itself is the exclusive OR operation, embodied in the XOR instruction.
XOR, again, does in broad terms what AND and OR do: it performs a logical
operation on its two operands, and the result replaces the destination operand.
The logical operation, however, is exclusive or, meaning that the result is 1 only
if the two operands are different (that is, 1 and 0 or 0 and 1). The truth table
for XOR, shown in Table 9-4, should make this slightly slippery notion a little
clearer.

Table 9-4: The XOR Truth Table for Assembly Language

BIT 1 OPERATOR BIT 2 RESULT BIT

0 XOR 0 0

0 XOR 1 1

1 XOR 0 1

1 XOR 1 0

Look over Table 9-4 carefully! In the first and last cases, where the two
operands are the same, the result is 0. In the middle two cases, where the two
operands are different, the result is 1.

Some interesting things can be done with XOR, but most of them are a
little arcane for a beginners’ book. One non-obvious use of XOR is this: XORing
any value against itself yields 0. In other words, if you execute the XOR

instruction with both operands as the same register, that register will be
cleared to 0:

xor eax,eax ; Zero out the eax register

In the old days, this was faster than loading a 0 into a register from immediate
data using MOV. Although that’s no longer the case, it’s an interesting trick to
know. How it works should be obvious from reading the truth table, but to
drive it home I’ve laid it out in Figure 9-3.

Follow each of the individual XOR operations across the figure to its result
value. Because each bit in AL is XORed against itself, in every case the XOR

operations happen between two operands that are identical. Sometimes both
are 1, sometimes both are 0, but in every case the two are the same. With the
XOR operation, when the two operands are the same, the result is always 0.
Voila! Zero in a register.

Chapter 9 ■ Bits, Flags, Branches, and Tables 285

1 1 0

0

1

1

1

0

0

1

0

1

1

1

0

0

1

0

0

0

0

0

0

0

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

=

=

=

=

=

=

=

=

XOR AL, AL
AL : 9DH
10011101

After Execution:
AL : 0

LSB

MSB

Figure 9-3: Using XOR to zero a register

The NOT Instruction
Easiest to understand of all the bitwise logical instructions is NOT. The truth
table for NOT is simpler than the others we’ve looked at because NOT only takes
one operand. And what it does is simple as well: NOT takes the state of each
bit in its single operand and changes that bit to its opposite state. What was 1
becomes 0, and what was 0 becomes 1, as shown in Table 9-5.

Table 9-5: The NOT Truth Table for Assembly Language

BIT OPERATOR RESULT BIT

0 NOT 1

1 NOT 0

Segment Registers Don’t Respond to Logic!
You won’t be directly accessing the x86 segment registers until you get into
the depths of operating system programming. The segment registers belong
to the OS, and user-space programs cannot change them in any way.

But even when you begin working at the operating-system level, the segment
registers have significant limitations. One such limitation is that they cannot

286 Chapter 9 ■ Bits, Flags, Branches, and Tables

be used with any of the bitwise logic instructions. If you try, the assembler will
hand you an ‘‘Illegal use of segment register’’ error. If you need to perform
a logical operation on a segment register, you must first copy the segment
register’s value into one of the registers EAX, EBX, ECX, EDX, EBP, ESI, or
EDI; perform the logical operation on the GP register; and then copy the result
in the GP register back into the segment register.

The general-purpose registers are called ‘‘general purpose’’ for a reason, and
the segment registers are not in any way general-purpose. They are specialists
in memory addressing, and if you have to modify segment values, the general
approach is to do the work in a general-purpose register and then move the
modified value into the segment register in question.

Shifting Bits

The other way of manipulating bits within a byte is a little more straightfor-
ward: you shift them to one side or the other. There are a few wrinkles to the
process, but the simplest shift instructions are pretty obvious: SHL SHifts its
operand Left, whereas SHR SHifts its operand Right.

All of the shift instructions (including the slightly more complex ones I’ll
describe a little later) have the same general form, illustrated here by the SHL

instruction:

shl <register/memory>,<count>

The first operand is the target of the shift operation—that is, the value that
you’re going to be shifting. It can be register data or memory data, but not
immediate data. The second operand specifies the number of bits by which to
shift.

Shift By What?
This <count> operand has a peculiar history. On the ancient 8086 and 8088, it
could be one of two things: the immediate digit 1 or the register CL. (Not CX!)
If you specified the count as 1, then the shift would be by one bit. If you wished
to shift by more than one bit at a time, you had to load the shift count into
register CL. In the days before the x86 general-purpose registers became truly
general-purpose, counting things used to be CX’s (and hence CL’s) ‘‘hidden
agenda.’’ It would count shifts, passes through loops, string elements, and a
few other things. That’s why it’s sometimes called the count register and can be
remembered by the C in count.

Although you can shift by a number as large as 255, it really only makes
sense to use shift count values up to 32. If you shift any bit in a double word

Chapter 9 ■ Bits, Flags, Branches, and Tables 287

by 32, you shift it completely out of the 32-bit double word—not to mention
out of any byte or word!

Starting with the 286 and for all more recent x86 CPUs, the <count> operand
may be any immediate value from 1 to 255. As Linux requires at least a 386 to
run, the ancient restrictions on where the shift count value had to be no longer
apply when you’re programming under Linux.

How Bit Shifting Works
Understanding the shift instructions requires that you think of the numbers
being shifted as binary numbers, and not hexadecimal or decimal numbers. (If
you’re fuzzy on binary notation, take another focused pass through Chapter 2.)
A simple example would start with register AX containing a value of 0B76FH.
Expressed as a binary number (and hence as a bit pattern), 0B76FH is as
follows:

1011011101101111

Keep in mind that each digit in a binary number is one bit. If you execute an
SHL AX,1 instruction, what you’d find in AX after the shift is the following:

0110111011011110

A 0 has been inserted at the right-hand end of the number, and the whole
shebang has been bumped toward the left by one digit. Notice that a 1 bit has
been bumped off the left end of the number into cosmic nothingness.

Bumping Bits into the Carry Flag
Well, not exactly cosmic nothingness. The last bit shifted out of the left end of
the binary number is bumped into a temporary bucket for bits called the Carry
flag, generally abbreviated as CF. The Carry flag is one of those informational
bits gathered together as the EFlags register, which I described in Chapter 7.
You can test the state of the Carry flag with a branching instruction, as I’ll
explain a little later in this chapter.

However, keep in mind when using shift instructions that a lot of different
instructions use the Carry flag—not only the shift instructions. If you bump
a bit into the Carry flag with the intent of testing that bit later to see what
it is, test it before you execute another instruction that affects the Carry flag.
This includes all the arithmetic instructions, all the bitwise logical instructions,
a few other miscellaneous instructions—and, of course, all the other shift
instructions.

If you shift a bit into the Carry flag and then immediately execute another
shift instruction, that first bit will be bumped off the end of the world and into
cosmic nothingness.

288 Chapter 9 ■ Bits, Flags, Branches, and Tables

The Rotate Instructions
That said, if a bit’s destiny is not to be lost in cosmic nothingness, you need to
use the rotate instructions RCL, RCR, ROL, and ROR instead. The rotate instructions
are almost identical to the shift instructions, but with a crucial difference: a
bit bumped off one end of the operand reappears at the opposite end of the
operand. As you rotate an operand by more than one bit, the bits march
steadily in one direction, falling off the end and immediately reappearing at
the opposite end. The bits thus ‘‘rotate’’ through the operand as the rotate
instruction is executed.

Like so many things, this shows better than it tells. Take a look at
Figure 9-4. The example shown here is the ROL (Rotate Left) instruction,
but the ROR instruction works the very same way, with the bits moving in the
opposite direction. An initial binary value of 10110010 (0B2h) is placed in AL.
When an ROL AL,1 instruction is executed, all the bits in AL march toward the
left by one position. The 1-bit in bit 7 exits AL stage left, but runs around and
reappears immediately from stage right.

0 1 1 0 0 1 0 1

The binary value 10110010 in AL before ROL AL,1:

ROL shifts all bits left and moves bit 7 to bit 0.
What was 10110010 is now 01100101.

1 0 1 1 0 0 1 0

Bit 0

Figure 9-4: How the rotate instructions work

Again, ROR works exactly the same way, but the movement of bits is from
left to right instead of (as with ROL) right to left. The number of bits by which
an operand is rotated can be either an immediate value or a value in CL.

There is a second pair of rotate instructions in the x86 instruction set: RCR
(Rotate Carry Right) and RCL (Rotate Carry Left). These operate as ROL and ROR

do, but with a twist: The bits that are shifted out the end of an operand and
reenter the operand at the beginning travel by way of the Carry flag. The path
that any single bit takes in a rotate through CF is thus one bit longer than it
would be in ROL and ROR. I’ve shown this graphically in Figure 9-5.

As with the shift instructions, there’s no advantage to rotating a value by
more than 31 bits. (If you rotate a value by 32 bits, you end up with the same

Chapter 9 ■ Bits, Flags, Branches, and Tables 289

1 0 1 1 0 0 1 0 0

The binary value 10110010 in AL before RCL AL,1:

RCL shifts all bits left and moves bit 7 to the Carry flag.
The 0-bit previously in the Carry flag is moved into bit 0.

CF

0 1 1 0 0 1 010

CF
Bit 0

Figure 9-5: How the rotate through carry instructions work

value in the operand that you started with.) The rotate instructions bump bits
off one end of the operand and then feed them back into the opposite end
of the operand, to begin the trip again. If you mentally follow a single bit
through the rotation process, you’ll realize that after 32 rotations, any given
bit is where it was when you started rotating the value. What’s true of one bit
is true of them all, so 31 rotations is as much as will be useful on a 32-bit value.
This is why, in protected mode programming (and on the old 286 as well), the
shift-by count is truncated to 5 bits before the instruction executes. After all,
the largest value expressible in 5 bits is . . . 32!

Setting a Known Value into the Carry Flag
It’s also useful to remember that previous instructions can leave values in
CF, and those values will be rotated into an operand during an RCL or RCR

instruction. Some people have the mistaken understanding that CF is forced
to 0 before a shift or rotate instruction, which is not true. If another instruction
leaves a 1-bit in CF immediately before an RCR or RCL instruction, that 1-bit
will obediently enter the destination operand, whether you want it to or not.

If starting out a rotate with a known value in CF is important, there is a
pair of x86 instructions that will do the job for you: CLC and STC. CLC clears
the Carry flag to 0. STC sets the Carry flag to one. Neither instruction takes an
operand, and neither has any other effects beyond changing the value in the
Carry flag.

Bit-Bashing in Action

As you saw in earlier chapters, Linux has a fairly convenient method for
displaying text to your screen. The problem is that it only displays text—if

290 Chapter 9 ■ Bits, Flags, Branches, and Tables

you want to display a numeric value from a register as a pair of hex digits,
Linux won’t help. You first have to convert the numeric value into its string
representation, and then display the string representation by calling the
sys_write kernel service via INT 80h.

Converting hexadecimal numbers to hexadecimal digits isn’t difficult, and
the code that does the job demonstrates several of the new concepts we’re
exploring in this chapter. The code in Listing 9-1 is the bare-bones core of a
hex dump utility, rather like a read-only version of the Bless Hex Editor. When
you redirect its input from a file of any kind, it will read that file 16 bytes at a
time, and display those 16 bytes in a line, as 16 hexadecimal values separated
by spaces.

Listing 9-1: hexdump1.asm

; Executable name : hexdump1

; Version : 1.0

; Created date : 4/4/2009

; Last update : 4/4/2009

; Author : Jeff Duntemann

; Description : A simple program in assembly for Linux, using NASM 2.05,

; demonstrating the conversion of binary values to hexadecimal strings.

; It acts as a very simple hex dump utility for files, though without the

; ASCII equivalent column.

;

; Run it this way:

; hexdump1 < (input file)

;

; Build using these commands:

; nasm -f elf -g -F stabs hexdump1.asm

; ld -o hexdump1 hexdump1.o

;

SECTION .bss ; Section containing uninitialized data

BUFFLEN equ 16 ; We read the file 16 bytes at a time

Buff: resb BUFFLEN ; Text buffer itself

SECTION .data ; Section containing initialized data

HexStr: db “ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00“,10

HEXLEN equ $-HexStr

Digits: db “0123456789ABCDEF“

SECTION .text ; Section containing code

global _start ; Linker needs this to find the entry point!

Chapter 9 ■ Bits, Flags, Branches, and Tables 291

Listing 9-1: hexdump1.asm (continued)

_start:

nop ; This no-op keeps gdb happy...

; Read a buffer full of text from stdin:

Read:

mov eax,3 ; Specify sys_read call

mov ebx,0 ; Specify File Descriptor 0: Standard Input

mov ecx,Buff ; Pass offset of the buffer to read to

mov edx,BUFFLEN ; Pass number of bytes to read at one pass

int 80h ; Call sys_read to fill the buffer

mov ebp,eax ; Save # of bytes read from file for later

cmp eax,0 ; If eax=0, sys_read reached EOF on stdin

je Done ; Jump If Equal (to 0, from compare)

; Set up the registers for the process buffer step:

mov esi,Buff ; Place address of file buffer into esi

mov edi,HexStr ; Place address of line string into edi

xor ecx,ecx ; Clear line string pointer to 0

; Go through the buffer and convert binary values to hex digits:

Scan:

xor eax,eax ; Clear eax to 0

; Here we calculate the offset into HexStr, which is the value in ecx X 3

mov edx,ecx ; Copy the character counter into edx

shl edx,1 ; Multiply pointer by 2 using left shift

add edx,ecx ; Complete the multiplication X3

; Get a character from the buffer and put it in both eax and ebx:

mov al,byte [esi+ecx] ; Put a byte from the input buffer into al

mov ebx,eax ; Duplicate the byte in bl for second nybble

; Look up low nybble character and insert it into the string:

and al,0Fh ; Mask out all but the low nybble

mov al,byte [Digits+eax] ; Look up the char equivalent of nybble

mov byte [HexStr+edx+2],al ; Write LSB char digit to line string

; Look up high nybble character and insert it into the string:

shr bl,4 ; Shift high 4 bits of char into low 4 bits

mov bl,byte [Digits+ebx] ; Look up char equivalent of nybble

mov byte [HexStr+edx+1],bl ; Write MSB char digit to line string

; Bump the buffer pointer to the next character and see if we’re done:

inc ecx ; Increment line string pointer

cmp ecx,ebp ; Compare to the number of chars in the buffer

jna Scan ; Loop back if ecx is <= number of chars in buffer

; Write the line of hexadecimal values to stdout:

(continued)

292 Chapter 9 ■ Bits, Flags, Branches, and Tables

Listing 9-1: hexdump1.asm (continued)

mov eax,4 ; Specify sys_write call

mov ebx,1 ; Specify File Descriptor 1: Standard output

mov ecx,HexStr ; Pass offset of line string

mov edx,HEXLEN ; Pass size of the line string

int 80h ; Make kernel call to display line string

jmp Read ; Loop back and load file buffer again

; All done! Let’s end this party:

Done:

mov eax,1 ; Code for Exit Syscall

mov ebx,0 ; Return a code of zero

int 80H ; Make kernel call

The hexdump1 program is at its heart a filter program, and has the same
general filter machinery used in the uppercaser2 program from Chapter 8.
The important parts of the program for this discussion are the parts that read
16 bytes from the input buffer and convert them to a string of characters for
display to the Linux console. This is the code between the label Scan and the
INT 80h exit call. I’ll be referring to that block of code in the discussion that
follows.

Splitting a Byte into Two Nybbles
Remember that the values read by Linux from a file are read into memory as
binary values. Hexadecimal is a way of displaying binary values, and in order
to display binary values as displayable ASCII hexadecimal digits, you have to
do some converting.

Displaying a single 8-bit binary value requires two hexadecimal digits. The
bottom four bits in a byte are represented by one digit (the least-significant, or
rightmost, digit) and the top four bits in the byte are represented by another
digit (the most significant, or leftmost, digit). The binary value 11100110, for
example, is the equivalent of E6 in hex. (I covered all this in detail in Chapter 2.)
Converting an 8-bit value into two 4-bit digits must be done one digit at a time,
which means that we have to separate the single byte into two 4-bit quantities,
which are often called nybbles.

In the hexdump1 program, a byte is read from Buff and is placed in two
registers, EAX and EBX. This is done because separating the high from the low
nybble in a byte is destructive, in that we basically zero out the nybble that we
don’t want.

To isolate the low nybble in a byte, we need to mask out the unwanted
nybble. This is done with an AND instruction:

and al,0Fh

Chapter 9 ■ Bits, Flags, Branches, and Tables 293

The immediate constant 0Fh expressed in binary is 00001111. If you follow
the operation through the AND truth table (Table 9-2) you’ll see that any bit
ANDed against 0 is 0. We AND the high nybble of register AL with 0000, which
zeros out anything that might be there. ANDing the low nybble against 1111
leaves whatever was in the low nibble precisely as it was.

When we’re done, we have the low nybble of the byte read from Buff in AL.

Shifting the High Nybble into the Low Nybble
Masking out the high nybble from the input byte in AL destroys it. We need
the high nybble, but we have a second copy of the input byte in EBX, and
that’s the copy from which we’ll extract the high nybble. As with the low
nybble, we’ll actually work with the least significant eight bits of EBX, as BL.
Remember that BL is just a different way of referring to the low eight bits
of EBX. It’s not a different register. If a value is loaded into EBX, its least
significant eight bits are in BL.

We could mask out the low nybble in BL with an AND instruction, leaving
behind the high nybble, but there’s a catch: masking out the low four bits of
a byte does not make the high four bits a nybble. We have to somehow move
the high four bits of the input byte into the low four bits.

The fastest way to do this is simply to shift BL to the right by four bits. This
is what the SHR BL,4 instruction does. The low nybble is simply shifted off the
edge of BL, into the Carry flag, and then out into cosmic nothingness. After
the shift, what was the high nybble in BL is now the low nybble.

At this point, we have the low nybble of the input byte in AL, and the high
nybble of the input byte in BL. The next challenge is converting the four-bit
number in a nybble (like 1110) into its displayable ASCII hex digit—in this
case, the character E.

Using a Lookup Table
In the .data section of the program is the definition of a very simple lookup
table. The Digits table has this definition:

Digits db '0123456789ABCDEF’

The important thing to note about the Digits table is that each digit occupies
a position in the string whose offset from the start of the string is the value
it represents. In other words, the ASCII character ‘‘0’’ is at the very start of
the string, zero bytes offset from the string’s beginning. The character ‘‘7’’ lies
seven bytes from the start of the string, and so on.

We ‘‘look up’’ a character in the Digits table using a memory reference:

mov al,byte [Digits+eax]

294 Chapter 9 ■ Bits, Flags, Branches, and Tables

'1'

MOV AL, BYTE [Digits+EAX]

Digits + EAX

Digits '0'

'3'

'2'

'5'

'4'

'7'

'6'

'9'

'8'

'B'

'A'

'D'

'C'

'F'

'E'

AL: 7 (07H) AL: '7' (37H)

Note: Here, 'Digits' is the address
of a 16-byte table in memory

Before After

Figure 9-6: Using a lookup table

As with most of assembly language, everything here depends on memory
addressing. The first hex digit character in the lookup table is at the address in
Digits. To get at the desired digit, we must index into the lookup table. We do
this by adding an offset into the table to the address inside the brackets. This
offset is the nybble in AL.

Adding the offset in AL to the address of Digits (using EAX) takes us right
to the character that is the ASCII equivalent of the value in AL. I’ve drawn this
out graphically in Figure 9-6.

There are two possibly confusing things about the MOV instruction that
fetches a digit from Digits and places it in AL:

We must use EAX in the memory reference rather than AL, because AL
cannot take part in effective address calculations. Don’t forget that AL is

Chapter 9 ■ Bits, Flags, Branches, and Tables 295

‘‘inside’’ EAX! (More on effective address calculations a little later in this
chapter.)

We are replacing the nybble in AL with its character equivalent. The
instruction first fetches the character equivalent of the nybble from the
table, and then stores the character equivalent back into AL. The nybble
that was in AL is now gone.

So far, we’ve read a character from the lookup table into AL. The conversion
of that nybble is done. The next task sounds simple but is actually surprisingly
tricky: writing the ASCII hex digit character now in AL into the display string
at HexStr.

Multiplying by Shifting and Adding
The hexdump1 program reads bytes from a file and displays them in lines,
with 16 bytes represented in hex in each line. A portion of the output from the
program is shown here:

3B 20 20 45 78 65 63 75 74 61 62 6C 65 20 6E 61

6D 65 20 3A 20 45 40 54 53 59 53 43 40 4C 4C 0D

0A 3B 20 20 56 65 72 73 69 6F 6E 20 20 20 20 20

20 20 20 20 3A 20 30 2E 30 0D 0A 3B 20 20 43 72

65 60 74 65 64 20 64 60 74 65 20 20 20 20 3A 20

30 2F 37 2F 32 30 30 39 0D 0A 3B 20 20 4C 60 73

74 20 75 70 64 60 74 65 20 20 20 20 20 3A 20 32

2F 30 38 2F 32 30 30 39 0D 0A 3B 20 20 40 75 74

68 6F 72 20 20 20 20 20 20 20 20 20 20 3A 20 4A

Each of these lines is a display of the same item: HexStr, a string of 48
characters with an EOL on the end. Each time hexdump1 reads a block of 16
bytes from the input file, it formats them as ASCII hex digits and inserts them
into HexStr. In a sense, this is another type of table manipulation, except that
instead of looking up something in a table, we’re writing values into a table,
based on an index.

One way to think about HexStr is as a table of 16 entries, each entry three
characters long (see Figure 9-7). In each entry, the first character is a space,
and the second and third characters are the hex digits themselves. The space
characters are already there, as part of the original definition of HexStr in the
.data section. The original ‘‘empty’’ HexStr has 0 characters in all hex digit
positions. To ‘‘fill’’ HexStr with ‘‘real’’ data for each line’s display, we have
to scan through HexStr in an assembly language loop, writing the low nybble
character and the high nybble character separately.

The tricky business here is that for each pass through the loop, we have to
‘‘bump’’ the index into HexStr by three instead of just by one. The offset of
one of those three-byte entries in HexStr is the index of the entry multiplied

296 Chapter 9 ■ Bits, Flags, Branches, and Tables

6 C 4 9 F E 7 0

Entry 0 Entry 1 Entry 2 Entry 15

+0 +1 +2 +0 +1 +2 +0 +1 +2 +0 +1 +2

HexStr HexStr + 3 HexStr + 6 HexStr + 45

HexStr + (3 × Entry #) + 2

HexStr + (3 × 2) + 2

HexStr + 8

Figure 9-7: A table of 16 three-byte entries

by three. I’ve already described the MUL instruction, which handles arbitrary
unsigned multiplication in the x86 instruction set. MUL, however, is very slow
as instructions go. It has other limitations as well, especially the ways in which
it requires specific registers for its implicit operands.

Fortunately, there are other, faster ways to multiply in assembly, with just a
little cleverness. These ways are based on the fact that it’s very easy and very
fast to multiply by powers of two, using the SHL (Shift Left) instruction. It may
not be immediately obvious to you, but each time you shift a quantity one bit
to the left, you’re multiplying that quantity by two. Shift a quantity two bits
to the left, and you’re multiplying it by four. Shift it three bits to the left, and
you’re multiplying by eight, and so on.

You can take my word for it, or you can actually watch it happen in a
sandbox. Set up a fresh sandbox in Kate and enter the following instructions:

mov al,3

shl al,1

shl al,1

shl al,2

Build the sandbox and load the executable into Insight. Set the EAX display
field in the Registers view to Decimal. (This must be done after the sandbox
program is running, by right-clicking on the EAX field and selecting Decimal
from the context menu.) Then step through the instructions, watching the
value of EAX change in the Registers view for each step.

The first instruction loads the value 3 into AL. The next instruction shifts AL
to the left by one bit. The value in AL becomes 6. The second SHL instruction
shifts AL left by one bit again, and the 6 becomes 12. The third SHL instruction
shifts AL by two bits, and the 12 becomes 48. I’ve shown this graphically in
Figure 9-8.

Chapter 9 ■ Bits, Flags, Branches, and Tables 297

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 0

0 0 0 0 1 1 0 0

Value = 3

Value = 6

Value = 12

SHL AL,1

SHL AL,1

SHL AL,2

0 0 1 1 0 0 0 0 Value = 48

Figure 9-8: Multiplying by shifting

What if you want to multiply by 3? Easy: you multiply by 2 and then add
one more copy of the multiplicand to the product. In the hexdump1 program,
it’s done this way:

mov edx,ecx ; Copy the character counter into edx

shl edx,1 ; Multiply pointer by 2 using left shift

add edx,ecx ; Complete the multiplication X3

Here, the multiplicand is loaded from the loop counter ECX into EDX. EDX
is then shifted left by one bit to multiply it by 2. Finally, ECX is added once to
the product EDX to make it multiplication by 3.

Multiplication by other numbers that are not powers of two may be done by
combining a SHL and one or more ADDs. To multiply a value in ECX by 7, you
would do this:

mov edx,ecx ; Keep a copy of the multiplicand in ecx

shl edx,2 ; Multiply edx by 4

add edx,ecx ; Makes it X 5

add edx,ecx ; Makes it X 6

add edx,ecx ; Makes it X 7

This may look clumsy, but remarkably enough, it’s still faster than using
MUL! (There’s an even faster way to multiply by 3 that I’ll show you a little later
in this chapter.)

Once you understand how the string table HexStr is set up, writing the hex
digits into it is straightforward. The least-significant hex digit is in AL, and the

298 Chapter 9 ■ Bits, Flags, Branches, and Tables

most significant hex digit is in BL. Writing both hex digits into HexString is
done with a three-part memory address:

mov byte [HexStr+edx+2],al ; Write the LSB char digit to line string

mov byte [HexStr+edx+1],bl ; Write the MSB char digit to line string

Refer back to Figure 9-7 to work this out for yourself: you begin with the
address of HexStr as a whole. EDX contains the offset of the first character in
a given entry. To obtain the address of the entry in question, you add HexStr

and EDX. However, that address is of the first character in the entry, which in
HexStr is always a space character. The position of the LSB digit in an entry is
the entry’s offset +2, and the position of the MSB digit in an entry is the entry’s
offset +1. The address of the LSB digit is therefore HexStr + the offset of the
entry, + 2. The address of the MSB digit is therefore HexStr + the offset of
the entry, + 1.

Flags, Tests, and Branches

From a height, the idea of conditional jump instructions is simple, and without
it, you won’t get much done in assembly. I’ve been using conditional jumps
informally in the last few example programs without saying much about them,
because the sense of the jumps was pretty obvious from context, and they
were necessary to demonstrate other things. But underneath the simplicity of
the idea of assembly language jumps lies a great deal of complexity. It’s time
to get down and cover that in detail.

Unconditional Jumps
A jump is just that: an abrupt change in the flow of instruction execution.
Ordinarily, instructions are executed one after the other, in order, moving
from low memory toward high memory. Jump instructions alter the address of
the next instruction to be executed. Execute a jump instruction, and zap! All
of a sudden you’re somewhere else. A jump instruction can move execution
forward in memory or backward. It can bend execution back into a loop. (It
can also tie your program logic in knots.)

There are two kinds of jumps: conditional and unconditional. An
unconditional jump is a jump that always happens. It takes this form:

jmp <label>

When this instruction executes, the sequence of execution moves to the
instruction located at the label specified by <label>. It’s just that simple.

Chapter 9 ■ Bits, Flags, Branches, and Tables 299

Conditional Jumps
A conditional jump instruction is one of those fabled tests I introduced in
Chapter 1. When executed, a conditional jump tests something—usually one,
occasionally two, or, much more rarely, three of the flags in the EFlags register.
If the flag or flags being tested happen to be in a particular state, execution
will jump to a label somewhere else in the code segment; otherwise, it simply
falls through to the next instruction in sequence.

This two-way nature is important. A conditional jump instruction either
jumps or it falls through. Jump or no jump. It can’t jump to one of two places,
or three. Whether it jumps or not depends on the current value of a very small
set of bits within the CPU.

As I mentioned earlier in this book while discussing the EFlags register as a
whole, there is a flag that is set to 1 by certain instructions when the result of
that instruction is zero: the Zero flag (ZF). The DEC (DECrement) instruction is
a good example. DEC subtracts one from its operand. If by that subtraction the
operand becomes zero, ZF is set to 1. One of the conditional jump instructions,
JZ (Jump if Zero), tests ZF. If ZF is found set to 1, then a jump occurs, and
execution transfers to the label after the ZF mnemonic. If ZF is found to be 0,
then execution falls through to the next instruction in sequence. This may be
the commonest conditional jump in the entire x86 instruction set. It’s often
used when you’re counting a register down to zero while executing a loop,
and when the count register goes to zero by virtue of the DEC instruction, the
loop ends, and execution picks up again right after the loop.

Here’s a simple (if slightly bizarre) example, using instructions you should
already understand:

mov word [RunningSum],0 ; Clear the running total

mov ecx,17 ; We’re going to do this 17 times

WorkLoop:

add word [RunningSum],3 ; Add three to the running total

dec ecx ; Subtract 1 from the loop counter

jz SomewhereElse ; If the counter is zero, we’re done!

jmp WorkLoop

Before the loop begins, we set up a value in ECX, which acts as the count
register and contains the number of times we’re going to run through the loop.
The body of the loop is where something gets done on each pass through the
loop. In this example it’s a single ADD instruction, but it could be dozens or
hundreds of instructions long.

After the work of the loop is accomplished, the count register is decremented
by 1 with a DEC instruction. Immediately afterward, the JZ instruction tests
the Zero flag. Decrementing ECX from 17 to 16, or from 4 to 3, does not set
ZF, and the JZ instruction simply falls through. The instruction after JZ is

300 Chapter 9 ■ Bits, Flags, Branches, and Tables

an unconditional jump instruction, which obediently and consistently takes
execution back to the WorkLoop label every time.

Now, decrementing ECX from 1 to 0 does set ZF, and that’s when the loop
ends. JZ finally takes us out of the loop by jumping to SomewhereElse (a label
in the larger program not shown here), and execution leaves the loop.

If you’re sharp enough, you may realize that this is a lousy way to set up
a loop. (That doesn’t mean it’s never been done, or that you yourself may
not do it in a late-night moment of impatience.) What we’re really looking for
each time through the loop is when a condition—the Zero flag— isn’t set, and
there’s an instruction for that too.

Jumping on the Absence of a Condition
There are quite a few conditional jump instructions, of which I’ll discuss
several but not all in this book. Their number is increased by the fact that
almost every conditional jump instruction has an alter ego: a jump when the
specified condition is not set to 1.

The JZ instruction provides a good example of jumping on a condition. JZ
jumps to a new location in the code segment if the Zero flag (ZF) is set to 1.
JZ’s alter ego is JNZ (Jump if Not Zero). JNZ jumps to a label if ZF is 0, and falls
through if ZF is 1.

This may be confusing at first, because JNZ jumps when ZF is equal to 0.
Keep in mind that the name of the instruction applies to the condition being
tested and not necessarily the binary bit value of the flag. In the previous code
example, JZ jumped when the DEC instruction decremented a counter to zero.
The condition being tested is something connected with an earlier instruction,
not simply the state of ZF.

Think of it this way: a condition raises a flag. ‘‘Raising a flag’’ means setting
the flag to 1. When one of numerous instructions forces an operand to a
value of zero (which is the condition), the Zero flag is raised. The logic of the
instruction refers to the condition, not to the flag.

As an example, let’s improve the little loop shown earlier by changing the
loop logic to use JNZ:

mov word [RunningSum],0 ; Clear the running total

mov ecx,17 ; We’re going to do this 17 times

WorkLoop:

add word [RunningSum],3 ; Add three to the running total

dec ecx ; Subtract 1 from the loop counter

jnz WorkLoop ; If the counter is zero, we’re done!

The JZ instruction has been replaced with a JNZ instruction. That makes
much more sense, since to close the loop we have to jump, and we only close
the loop while the counter is greater than 0. The jump back to label WorkLoop
will happen only while the counter is greater than 0.

Chapter 9 ■ Bits, Flags, Branches, and Tables 301

Once the counter decrements to 0, the loop is considered finished. JNZ falls
through, and the code that follows the loop (not shown here) executes. The
point is that if you can position the program’s next task immediately after the
JNZ instruction, you don’t need to use the JMP instruction at all. Instruction
execution will just flow naturally into the next task that needs performing. The
program will have a more natural and less convoluted top-to-bottom flow and
will be easier to read and understand.

Flags
Back in Chapter 7, I explained the EFlags register and briefly described the
purposes of all the flags it contains. Most flags are not terribly useful, especially
when you’re first starting out as a programmer. The Carry flag (CF) and the
Zero flag (ZF) will be 90 percent of your involvement in flags as a beginner,
with the Direction flag (DF), Sign flag (SF), and Overflow flag (OF) together
making up an additional 99.98 percent. It might be a good idea to reread that
part of Chapter 7 now, just in case your grasp of flag etiquette has gotten a
little rusty.

As explained earlier, JZ jumps when ZF is 1, whereas JNZ jumps when ZF
is 0. Most instructions that perform some operation on an operand (such as
AND, OR, XOR, INC, DEC, and all arithmetic instructions) set ZF according to the
results of the operation. On the other hand, instructions that simply move data
around (such as MOV, XCHG, PUSH, and POP) do not affect ZF or any of the other
flags. (Obviously, POPF affects the flags by popping the top-of-stack value into
them.) One irritating exception is the NOT instruction, which performs a logical
operation on its operand but does not set any flags—even when it causes its
operand to become 0. Before you write code that depends on flags, check your
instruction reference to ensure that you have the flag etiquette down correctly
for that instruction. The x86 instruction set is nothing if not quirky.

Comparisons with CMP
One major use of flags is in controlling loops. Another is in comparisons
between two values. Your programs will often need to know whether a value
in a register or memory is equal to some other value. Further, you may want
to know if a value is greater than a value or less than a value if it is not equal
to that value. There is a jump instruction to satisfy every need, but something
has to set the flags for the benefit of the jump instruction. The CMP (CoMPare)
instruction is what sets the flags for comparison tasks.
CMP’s use is straightforward and intuitive. The second operand is compared
with the first, and several flags are set accordingly:

cmp <op1>,<op2> ; Sets OF, SF, ZF, AF, PF, and CF

302 Chapter 9 ■ Bits, Flags, Branches, and Tables

The sense of the comparison can be remembered if you simply recast the
comparison in arithmetic terms:

Result = <op1> - <op2>

CMP is very much a subtraction operation whereby the result of the subtraction
is thrown away, and only the flags are affected. The second operand is
subtracted from the first. Based on the results of the subtraction, the other flags
are set to appropriate values.

After a CMP instruction, you can jump based on several arithmetic conditions.
People who have a reasonable grounding in math, and FORTRAN or Pascal
programmers, will recognize the conditions: Equal, Not equal, Greater than,
Less than, Greater than or equal to, and Less than or equal to. The sense of
these operators follows from their names and is exactly like the sense of the
equivalent operators in most high-level languages.

A Jungle of Jump Instructions
There is a bewildering array of jump instruction mnemonics, but those dealing
with arithmetic relationships sort out well into just six categories, one category
for each of the six preceding conditions. Complication arises from the fact
that there are two mnemonics for each machine instruction—for example, JLE
(Jump if Less than or Equal) and JNG (Jump if Not Greater than). These two
mnemonics are synonyms in that the assembler generates the identical binary
opcode when it encounters either mnemonic. The synonyms are a convenience
to you, the programmer, in that they provide two alternate ways to think
about a given jump instruction. In the preceding example, Jump if Less Than
or Equal to is logically identical to Jump if Not Greater Than. (Think about it!)
If the importance of the preceding compare were to see whether one value is
less than or equal to another, you’d use the JLE mnemonic. Conversely, if you
were testing to be sure that one quantity was not greater than another, you’d
use JNG. The choice is yours.

Another complication is that there is a separate set of instructions for signed
and unsigned arithmetic comparisons. I haven’t spoken much about assembly
language math in this book, and thus haven’t said much about the difference
between signed and unsigned quantities. A signed quantity is one in which
the high bit of the quantity is considered a built-in flag indicating whether the
quantity is negative. If that bit is 1, then the quantity is considered negative. If
that bit is 0, then the quantity is considered positive.

Signed arithmetic in assembly language is complex and subtle, and not as
useful as you might immediately think. I won’t be covering it in detail in this
book, though nearly all assembly language books treat it to some extent. All
you need know to get a high-level understanding of signed arithmetic is that

Chapter 9 ■ Bits, Flags, Branches, and Tables 303

in signed arithmetic, negative quantities are legal and the most significant bit
of a value is treated as the sign bit. (If the sign bit is set to 1, then the value is
considered negative.)

Unsigned arithmetic, on the other hand, does not recognize negative num-
bers, and the most significant bit is just one more bit in the binary number
expressed by the quantity.

‘‘Greater Than‘‘ Versus ’’Above’’
To tell the signed jumps apart from the unsigned jumps, the mnemonics use
two different expressions for the relationship between two values:

Signed values are thought of as being greater than or less than. For example,
to test whether one signed operand is greater than another, you would
use the JG (Jump if Greater) mnemonic after a CMP instruction.

Unsigned values are thought of as being above or below. For example, to
tell whether one unsigned operand is greater than (above) another, you
would use the JA (Jump if Above) mnemonic after a CMP instruction.

Table 9-6 summarizes the arithmetic jump mnemonics and their synonyms.
Any mnemonics containing the words above or below are for unsigned values,
whereas any mnemonics containing the words greater or less are for signed
values. Compare the mnemonics with their synonyms and note how the two
represent opposite viewpoints from which to look at identical instructions.

Table 9-6 simply serves to expand the mnemonics into a more comprehen-
sible form and associate a mnemonic with its synonym. Table 9-7, on the other
hand, sorts the mnemonics by logical condition and according to their use with
signed and unsigned values. Also listed in Table 9-7 are the flags whose values
are tested by each jump instruction. Notice that some of the jump instructions
require one of two possible flag values in order to take the jump, while others
require both of two flag values.

Several of the signed jumps compare two of the flags against one another.
JG, for example, will jump when either ZF is 0, or when the Sign flag (SF) is
equal to the Overflow flag (OF). I won’t spend any more time explaining the
nature of the Sign flag or the Overflow flag. As long as you have the sense of
each instruction under your belt, understanding exactly how the instructions
test the flags can wait until you’ve gained some programming experience.

Some people have trouble understanding how the JE and JZ mnemonics are
synonyms, as are JNE and JNZ. Think again of the way a comparison is done
within the CPU: the second operand is subtracted from the first, and if the
result is 0 (indicating that the two operands were in fact equal), then the Zero
flag is set to 1. That’s why JE and JZ are synonyms: both are simply testing the
state of the Zero flag.

304 Chapter 9 ■ Bits, Flags, Branches, and Tables

Table 9-6: Jump Instruction Mnemonics and Their Synonyms

MNEMONICS SYNONYMS

JA Jump if Above JNBE Jump if Not Below or Equal

JAE Jump if Above or Equal JNB Jump if Not Below

JB Jump if Below JNAE Jump if Not Above or Equal

JBE Jump if Below or Equal JNA Jump if Not Above

JE Jump if Equal JZ Jump if result is Zero

JNE Jump if Not Equal JNZ Jump if result is Not Zero

JG Jump if Greater JNLE Jump if Not Less than or Equal

JGE Jump if Greater or Equal JNL Jump if Not Less

JL Jump if Less JNGE Jump if Not Greater or Equal

JLE Jump if Less or Equal JNG Jump if Not Greater

Looking for 1-Bits with TEST
The x86 instruction set recognizes that bit testing is done a lot in assembly
language, and it provides what amounts to a CMP instruction for bits: TEST. TEST
performs an AND logical operation between two operands, and then sets the
flags as the AND instruction would, without altering the destination operation,
as AND also would. Here’s the TEST instruction syntax:

test <operand>,<bit mask>

The bit mask operand should contain a 1 bit in each position where a 1 bit is
to be sought in the operand, and 0 bits in all the other bits.

WhatTESTdoes is perform theAND logical operation between the instruction’s
destination operand and the bit mask, and then set the flags as the AND

instruction would do. The result of the AND operation is discarded, and the
destination operand doesn’t change. For example, if you want to determine
whether bit 3 of AX is set to 1, you would use this instruction:

test ax,08h ; Bit 3 in binary is 00001000B, or 08h

Bit 3, of course, does not have the numeric value 3—you have to look at the
bit pattern of the mask and express it as a binary or hexadecimal value. (Bit 3
represents the value 8 in binary.) Using binary for literal constants is perfectly
legal in NASM, and often the clearest expression of what you’re doing when
you’re working with bit masks:

test ax,00001000B ; Bit 3 in binary is 00001000B, or 08h

Chapter 9 ■ Bits, Flags, Branches, and Tables 305

Table 9-7: Arithmetic Tests Useful After a CMP Instruction

CONDITION PASCAL UNSIGNED JUMPS SIGNED JUMPS
OPERATOR VALUES WHEN VALUES WHEN

Equal = JE ZF=1 JE ZF=1

Not Equal <> JNE ZF=0 JNE ZF=0

Greater than > JA CF=0
and
ZF=0

JG ZF=0 or
SF=OF

Not Less than
or equal to

JNBE CF=0
and
ZF=0

JNLE ZF=0 or
SF=OF

Less than < JB CF=1 JL SF<>OF

Not Greater
than or equal
to

JNAE CF=1 JNGE SF<>OF

Greater than
or equal to

>= JAE CF=0 JGE SF=OF

Not Less than JNB CF=0 JNL SF=OF

Less than or
equal to

<= JBE CF=1 or
ZF=1

JLE ZF=1 or
SF<>OF

Not Greater
than

JNA CF=1 or
ZF=1

JNG ZF=1 or
SF<>OF

Destination operand AX doesn’t change as a result of the operation, but the
AND truth table is asserted between AX and the binary pattern 00001000. If bit
3 in AX is a 1 bit, then the Zero flag is cleared to 0. If bit 3 in AX is a 0 bit, then
the Zero flag is set to 1. Why? If you AND 1 (in the bit mask) with 0 (in AX), you
get 0. (Look it up in the AND truth table, shown previously in Table 9-2.) And if
all eight bitwise AND operations come up 0, the result is 0, and the Zero flag is
raised to 1, indicating that the result is 0.

Key to understanding TEST is thinking of TEST as a sort of ‘‘Phantom of
the Opcode,’’ where the opcode is AND. TEST puts on a mask (as it were)
and pretends to be AND, but then doesn’t follow through with the results
of the operation. It simply sets the flags as though an AND operation had
occurred.

The CMP instruction is another Phantom of the Opcode and bears the same
relation to SUB as TEST bears to AND. CMP subtracts its second operand from its
first, but doesn’t follow through and store the result in the first operand. It just

306 Chapter 9 ■ Bits, Flags, Branches, and Tables

sets the flags as though a subtraction had occurred. As you’ve already seen,
this can be mighty useful when combined with conditional jump instructions.

Here’s something important to keep in mind: TEST is only useful for finding
1 bits. If you need to identify 0 bits, you must first flip each bit to its opposite
state with the NOT instruction. NOT changes all 1 bits to 0 bits, and all 0 bits to 1
bits. Once all 0 bits are flipped to 1 bits, you can test for a 1 bit where you need
to find a 0 bit. (Sometimes it helps to map it out on paper to keep it all straight
in your head.)

Finally, TEST will not reliably test for two or more 1 bits in the operand at
one time. TEST doesn’t check for the presence of a bit pattern; it checks for the
presence of a single 1 bit. In other words, if you need to confirm that both bits 4
and 5 are set to 1, TEST won’t hack it.

Looking for 0 Bits with BT
As I explained earlier, TEST has its limits: it’s not cut out for determining when
a bit is set to 0. TEST has been with us since the very earliest X86 CPUs, but
the 386 and newer processors have an instruction that enables you to test for
either 0 bits or 1 bits. BT (Bit Test) performs a very simple task: it copies the
specified bit from the first operand into the Carry flag (CF). In other words, if
the selected bit was a 1 bit, the Carry flag becomes set. If the selected bit was
a 0 bit, the Carry flag is cleared. You can then use any of the conditional jump
instructions that examine and act on the state of CF.
BT is easy to use. It takes two operands: the destination operand is the value
containing the bit in question; the source operand is the ordinal number of the
bit that you want to test, counting from 0:

bt <value containing bit>,<bit number>

Once you execute a BT instruction, you should immediately test the value in
the Carry flag and branch based on its value. Here’s an example:

bt eax,4 ; Test bit 4 of AX

jnc quit ; We’re all done if bit 4 = 0

Note something to be careful of, especially if you’re used to using TEST: You
are not creating a bit mask. With BT’s source operand you are specifying the
ordinal number of a bit. The literal constant 4 shown above is the bit’s number
(counting from 0), not the bit’s value, and that’s a crucial difference.

Also note that we’re branching if CF is not set; that’s what JNC (Jump if Not
Carry) does.

I hate to discuss code efficiency too much in a beginners’ book, but there
is a caution here: the BT instruction is pretty slow as instructions go—and
bit-banging is often something you do a great many times inside tight loops,

Chapter 9 ■ Bits, Flags, Branches, and Tables 307

where instruction speed can be significant. Using it here and there is fine, but
if you’re inside a loop that executes thousands or millions of times, consider
whether there might be a better way to test bits. Creaky old TEST is much
faster, but TEST only tests for 1 bits. Depending on your application, you may
be able to test for 0 bits more quickly another way, perhaps shifting a value
into the Carry flag with SHL or SHR, using NOT to invert a value. There are no
hard-and-fast rules, and everything depends on the dynamics of what you’re
doing. (That’s why I’m not teaching optimization systematically in this book!)

Protected Mode Memory Addressing in Detail

In so many ways, life is better now. And I’m not just talking about modern
dentistry, plug-and-play networking, and four-core CPUs. I used to program
in assembly for the real-mode 8088 CPUs in the original IBM PC—and I
remember real-mode memory addressing.

Like dentistry in the 1950s, 8088-based real-mode memory addressing was
just . . . painful. It was a hideous ratbag of restrictions and gotchas and
limits and Band-Aids, all of which veritably screamed out that the CPU was
desperately hungry for more transistors on the die. Addressing memory, for
example, was limited to EBX and EBP in most instructions, which meant a lot
of fancy footwork when several separate items had to be addressed in memory
all at the same time. And thinking about segment management still makes me
shudder.

Well, in the past 20 years our x86 CPUs got pretty much all the transistors
they wanted, and the bulk of those infuriating real-mode memory addressing
limitations have simply gone away. You can address memory with any of the
general-purpose registers. You can even address memory directly with the
stack pointer ESP, something that its 16-bit predecessor SP could not do. (You
shouldn’t change the value in ESP without considerable care, but ESP can now
take part in addressing modes from which the stack pointer was excluded in
16-bit real-mode land.)

Protected mode on the 386 CPU introduced a general-purpose
memory-addressing scheme in which all the GP registers can participate
equally. I’ve sketched it out in Figure 9-9, which may well be the single most
important figure in this entire book. Print it out and tape it to the wall next
to your machine. Refer to it often. Memory addressing is the key skill in assembly
language work. If you don’t understand that, nothing else matters at all.

When I first studied and understood this scheme, wounds still bleeding
from 16-bit 8088 real-mode segmented memory addressing, it looked too good
to be true. But true it is! Here are the rules:

The base and index registers may be any of the 32-bit general-purpose
registers, including ESP.

308 Chapter 9 ■ Bits, Flags, Branches, and Tables

BASE + (INDEX × SCALE) + DISP.

Any GP Register Any GP Register 1, 2, 4, or 8
(1 does nothing)

Any 32-bit
constant

The scale is applied to the index
before the additions are done.

Figure 9-9: Protected mode memory addressing

The displacement may be any 32-bit constant. Obviously, 0, while legal,
isn’t useful.

The scale must be one of the values 1, 2, 4, or 8. That’s it! The value 1 is
legal but doesn’t do anything useful, so it’s never used.

The index register is multiplied by the scale before the additions are done.
In other words, it’s not (base + index) × scale. Only the index register is
multiplied by the scale.

All of the elements are optional and may be used in almost any combina-
tion.

16-bit and 8-bit registers may not be used in memory addressing.

This last point is worth enlarging upon. There are several different ways you
can address memory, by gathering the components in the figure in different
combinations. Examples are shown in Table 9-8.

Effective Address Calculations
Each of the rows in Table 9-8 summarizes a method of expressing a memory
address in 32-bit protected mode. All but the first two involve a little arithmetic
among two or more terms within the brackets that signify an address. This
arithmetic is called effective address calculation, and the result of the calculation
is the effective address. The term is ‘‘effective address’’ in that it means that
address that will ultimately be used to read or write memory, irrespective of
how it is expressed. Effective address calculation is done by the instruction,
when the instruction is executed.

The effective address in the Base scheme is simply the 32-bit quantity stored
in the GP register between the brackets. No calculation is involved, but what
you see in the source code is not a literal or symbolic address. So although the

Chapter 9 ■ Bits, Flags, Branches, and Tables 309

Table 9-8: Protected Mode Memory-Addressing Schemes

SCHEME EXAMPLE DESCRIPTION

[BASE] [edx] Base only

[DISPLACEMENT] [0F3h] or
[<variable>]

Displacement, either
literal constant or
symbolic address

[BASE +
DISPLACEMENT]

[ecx + 033h] Base plus displacement

[BASE + INDEX] [eax + ecx] Base plus index

[INDEX × SCALE] [ebx * 4] Index times scale

[INDEX × SCALE +
DISPLACEMENT]

[eax * 8 + 65] Index times scale plus
displacement

[BASE + INDEX ×
SCALE]

[esp + edi * 2] Base plus index times
scale

[BASE + INDEX ×
SCALE +
DISPLACEMENT]

[esi + ebp * 4 + 9] Base plus index times
scale plus displacement

instruction is coded with a register name between the brackets, the address
that will be sent out to the memory system when the code executes is stored
inside the register.

The only case in which the effective address is right there on the line with
the instruction mnemonic would be a literal address within the brackets. This
is almost never done, because it’s extremely unlikely that you will know a
precise 32-bit numeric address at assembly time.

Most of the time there’s some arithmetic going on. In the Base + Index
scheme, for example, the contents of the two GP registers between the brackets
are added when the instruction is executed to form the effective address.

Displacements
Among the several components of a legal address, the displacement term is
actually one of the most slippery to understand. As I indicated in the previous
paragraph, the displacement term can be a literal address, but in all my years
of protected-mode assembly programming I’ve never done it, nor seen anyone
else do it. When the displacement term stands alone, it is virtually always
a symbolic address. By that I mean a named data item that you’ve defined
in your .data or .bss sections, like the HexStr variable from the hexdump1
program in Listing 9-1:

mov eax,[HexStr]

310 Chapter 9 ■ Bits, Flags, Branches, and Tables

What is placed in EAX here is the address given to the variable HexStr when
the program is loaded into memory. Like all addresses, it’s just a number, but
it’s determined at runtime rather than at assembly time, as a literal constant
numeric address would be.

A lot of beginners get confused when they see what looks like two displace-
ment terms between the brackets in a single address. The confusion stems
from the fact that if NASM sees two (or more) constant values in a memory
reference, it will combine them at assembly time into a single displacement
value. That’s what’s done here:

mov eax,[HexStr+3]

The address referred to symbolically by the variable named HexStr is simply
added to the literal constant 3 to form a single displacement value. The key
characteristic of a displacement term is that it is not in a register.

Base + Displacement Addressing
A simple and common addressing scheme is Base + Displacement, and I
demonstrated it in the hexdump1 program in Listing 9-1. The instruction that
inserts an ASCII character into the output line looks like this:

mov byte [HexStr+edx+2]

This is a perfect example of a case where there are two displacement terms
that NASM combines into one. The variable name HexStr resolves to a number
(the 32-bit address of HexStr) and it is easily added to the literal constant 2, so
there is actually only one base term (EDX) and one displacement term.

Base + Index Addressing
Perhaps the most common single addressing scheme is Base + Index, in which
the effective address is calculated by adding the contents of two GP registers
within the brackets. I demonstrated this addressing scheme in Chapter 8, in
the uppercaser2 program in Listing 8-2. Converting a character in the input
buffer from lowercase to uppercase is done by subtracting 20h from it:

sub byte [ebp+ecx],20h

The address of the buffer was earlier placed in EBP, and the number in ECX
is the offset from the buffer start of the character being processed during any
given pass through the loop. Adding the address of the buffer with an offset

Chapter 9 ■ Bits, Flags, Branches, and Tables 311

into the buffer yields the effective address of the character acted upon by the
SUB instruction.

But wait . . . why not use Base + Displacement addressing? This instruction
would be legal:

sub byte [Buff+ecx],20h

However, if you remember from the program (and it would be worth looking
at it again, and reading the associated text), we had to decrement the address
of Buff by one before beginning the loop. But wait some more . . . could
we have NASM do that little tweak by adding a second displacement term
of -1? Indeed we could, and it would work. The central loop of the uppercaser2
program would then look like this:

; Set up the registers for the process buffer step:

mov ecx,esi ; Place the number of bytes read into ecx

mov ebp,Buff ; Place address of buffer into ebp

; dec ebp ** We don’t need this instruction anymore! **

; Go through the buffer and convert lowercase to uppercase characters:

Scan:

cmp byte [Buff-1+ecx],61h ; Test input char against lowercase 'a’

jb Next ; If below 'a’ in ASCII, not lowercase

cmp byte [Buff-1+ecx],7Ah ; Test input char against lowercase 'z’

ja Next ; If above 'z’ in ASCII, not lowercase

; At this point, we have a lowercase char

sub byte [Buff-1+ecx],20h ; Subtract 20h to give uppercase...

Next: dec ecx ; Decrement counter

jnz Scan ; If characters remain, loop back

The initial DEC EBP instruction is no longer necessary. NASM does the math,
and the address of Buff is decremented by one within the effective address
expression when the program loads. This is actually the correct way to code
this particular loop, and I thought long and hard about whether to show it
in Chapter 8 or wait until I could explain memory addressing schemes in
detail.

Some people find the name ‘‘Base + Displacement’’ confusing, because in
most cases the Displacement term contains an address, and the Base term
is a register containing an offset into a data item at that address. The word
‘‘displacement’’ resembles the word ‘‘offset’’ in most people’s experience,
hence the confusion. This is one reason I don’t emphasize the names of
the various memory addressing schemes in this book, and certainly don’t
recommend memorizing the names. Understand how effective address calculation
works, and ignore the names of the schemes.

312 Chapter 9 ■ Bits, Flags, Branches, and Tables

Index × Scale + Displacement Addressing
Base + Index addressing is what you’ll typically use to scan through a buffer
in memory byte by byte, but what if you need to access a data item in a buffer
or table where each data item is not a single byte, but a word or a double
word? This requires slightly more powerful memory addressing machinery.

As a side note here, the word array is the general term for what I’ve been
calling a buffer or a table. Other writers may call a table an array, especially
when the context of the discussion is a high-level language, but all three terms
cook down to the same definition: a sequence of data items in memory, all
of the same size and same internal definition. In the programs shown so far,
we’ve looked at only very simple tables and buffers consisting of a sequence
of one-byte values all in a row. The Digits table in the hexdump1 program in
Listing 9-1 is such a table:

Digits: db “0123456789ABCDEF“

It’s 16 single-byte ASCII characters in a row in memory. You can access the
‘‘C’’ character within Digits this way, using Base + Displacement addressing:

mov ecx,12

mov edx,[Digits+ecx]

What if you have a table containing 32-bit values? Such a table is easy
enough to define:

Sums: dd “15,12,6,0,21,14,4,0,0,19“

The DD qualifier tells NASM that each item in the table Sums is a 32-bit
double word quantity. The literal constants plug a numeric value into each
element of the table. The address of the first element (here, 15) in Sums is just
the address of the table as a whole, contained in the variable Sums.

What is the address of the second element, 12? And how do you access it
from assembly code? Keep in mind that memory is addressed byte by byte,
and not double word by double word. The second entry in the table is at an
offset of four bytes into the table. If you tried to reference the second entry in
the table using an address [Sums + 1], you would get one of the bytes inside
the first table element’s double word, which would not be useful.

This is where the concept of scaling comes in. An address may include a scale
term, which is a multiplier and may be any of the literal constants 2, 4, or 8.
(The literal constant 1 is technically legal, but because the scale is a multiplier,
1 is not a useful scale value.) The product of the index and the scale terms is
added to the displacement to give the effective address. This is known as the
Index × Scale + Displacement addressing scheme.

Chapter 9 ■ Bits, Flags, Branches, and Tables 313

Typically, the scale term is the size of the individual elements in the table.
If your table consists of 2-byte word values, the scale would be 2. If your
table consists of 4-byte double word values, the scale would be 4. If your table
consists of 8-byte quad word values, the scale would be 8.

The best way to explain this is with a diagram. In Figure 9-10, we’re
confronted with the address [DDTable + ECX*4]. DDTable is a table of double
word (32-bit) values. DDTable’s address is the displacement. The ECX register
is the index, and for this example it contains 2, which is the number of the table
element that you want to access. Because it’s a table of 4-byte double words,
the scale value is 4.

[DDTable + ECX * 4]

2Index Value:

0 0 0 0 0 0 0 0 0 0 0 0

Displacement
 (Address of
DDTable in
Memory)

Effective Address of Table Element #2

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11

Table Element
#0

Table Element
#1

Table Element
#2

Scale Value:

X

+

(in a GP Register like ECX)

=

4 (One of the literal constants 2, 4, or 8)

Figure 9-10: How address scaling works

Because each table element is four bytes in size, the offset of element #2 from
the start of the table is 8. The effective address of the element is calculated by
first multiplying the index by the scale, and then adding the product to the
address of DDTable. There it is!

Other Addressing Schemes
Any addressing scheme that includes scaling works just this way. The differ-
ences lie in what other terms are figured into the effective address. The Base +
Index × Scale scheme adds a scaled index to a base value in a register rather
than a displacement:

mov ecx,2 ; Index is in ecx

314 Chapter 9 ■ Bits, Flags, Branches, and Tables

mov ebp,DDTable ; Table address is in ebp

mov edx,[ebp+ecx*4] ; Put the selected element into edx

You won’t always be working with the address of a predefined variable
like DDTable. Sometimes the address of the table will come from somewhere
else, most often a two-dimensional table consisting of a number of subtables
in memory, each subtable containing some number of elements. Such tables
are accessed in two steps: first you derive the address of the inner table in the
outer table, and then you derive the address of the desired element within the
inner table.

The most familiar example of this sort of two-dimensional table is something
I presented in earlier editions of this book, for DOS. The 25-line × 80-character
text video memory buffer under DOS was a two-dimensional table. Each of
the 25 lines was a table of 80 characters, and each character was represented
by a 2-byte word. (One byte was the ASCII value, and the other byte specified
attributes like color, underlining, and so on.) Therefore, the buffer as a whole
was an overall table of 25 smaller tables, each containing 80 2-byte word
values.

That sort of video access system died with DOS; Linux does not allow you
direct access to PC video memory. It was done a lot in the DOS era, however,
and is a good example of a two-dimensional table.

Scaling will serve you well for tables with 2-byte, 4-byte, or 8-byte elements.
What if your table consists of 3-byte elements? Or 5-byte elements? Or 17-byte
elements? Alas, in such cases you have to do some additional calculations in
order to zero in on one particular element. Effective address calculation won’t
do the whole job itself. I’ve already given you an example of such a table in
Listing 9-1. The line display string is a table of 3-byte elements. Each element
contains a space character followed by the two hex digit characters. Because
the elements are each three characters long, scaling cannot be done within the
instruction, and must be handled separately.

It’s not difficult. Scaling for the 3-byte elements in the HexStr table in the
hexdump1 program is done like this:

mov edx,ecx ; Copy the character counter into edx

shl edx,1 ; Multiply counter by 2 using left shift

add edx,ecx ; Complete the multiplication X3

The calculation to multiply a value in EDX by 3 is done with a combination
of an SHL instruction to multiply by 2, followed by an ADD instruction that
adds a third copy of the index value to the shifted index value, effectively
multiplying the original count value by 3.

Scaling for other index values can be done the same way. Scaling by 5
would be done by shifting the index value left by 2 bits, thus multiplying it
by 4, followed by adding another copy of the index value to complete the
multiplication by 5. In general terms, to scale an index value by X:

Chapter 9 ■ Bits, Flags, Branches, and Tables 315

1. Find the largest power of 2 less than X.

2. Shift the index value left by that power of 2.

3. Add a copy of the original index value to the shifted copy as many times
as it takes to complete the multiplication by X.

For example, if X is 11, the scale calculation would be done this way:

mov edx,ecx ; Copy the index into edx

shl edx,3 ; Multiply index by 8 by shifting counter left 3 times

add edx,ecx ; Add first of three additional copies of index

add edx,ecx ; Add second of three additional copies of index

add edx,ecx ; Add third of three additional copies of index

This works best for relatively small-scale values; once you get past 20 there
will be a lot of ADD instructions. At that point, the solution is not to calculate
the scale, but to look up the scale in a table specially defined for a given scale
value. For example, suppose your table elements are each 25 bytes long. You
could define a table with multiples of 25:

ScaleValues: dd 0,25,50,75,100,125,150,175,200,225,250,275,300

To scale an index value of 6 for an entry size of 25, you would look up the
product of 6 × 25 in the table this way:

mov ecx,6

mov eax,[ScaleValues+ecx*4]

The value in EAX now contains the effective address of the first byte of
element 6, counting elements (as usual) from 0.

LEA: The Top-Secret Math Machine
But wait (as they say on late-night TV), there’s more. One of the oddest
instructions, and in some respects the most wonderful instruction, in the
x86 architecture is LEA, Load Effective Address. On the surface, what it does
is simple: It calculates an effective address given between the brackets of
its source operand, and loads that address into any 32-bit general-purpose
register given as its destination operand. Refer back to the previous paragraph
and the MOV instruction that looks up the element with index 6 in the table
ScaleValues. In order to look up the item at index 6, it has to first calculate
the effective address of the item at index 6. This address is then used to access
memory.

What if you’d like to save that address in a register to use it later? That’s
what LEA does. Here’s LEA in action:

lea ebx,[ScaleValues+ecx*4]

316 Chapter 9 ■ Bits, Flags, Branches, and Tables

What happens here is that the CPU calculates the effective address given
inside the brackets, and loads that address into the EBX register. Keep in mind
that the individual entries in a table do not have labels and thus cannot be
referenced directly. LEA enables you to calculate the effective address of any
element in a table (or any calculable address at all!) and drop that address in a
register.

In itself this is very useful, but LEA also has an ‘‘off-label’’ purpose: doing fast
math without shifts, adds, or pokey MUL. If you remember, there is a calculation
in the hexdump1 program that multiplies by three using a shift and an add:

mov edx,ecx ; Copy the character counter into edx

shl edx,1 ; Multiply pointer by 2 using left shift

add edx,ecx ; Complete the multiplication X3

The preceding works, but look at what we can use that does exactly the
same thing:

mov edx,ecx ; Copy the character counter into edx

lea edx,[edx*2+edx] ; Multiply edx X 3

Not only is this virtually always faster than shifts combined with adds, it’s
also clearer from your source code what sort of calculation is actually being
done. The fact that what ends up in EDX may not in fact be the legal address of
anything is unimportant. LEA does not try to reference the address it calculates. It
does the math on the stuff inside the brackets and drops it into the destination
operand. Job over. Memory is not touched, and the flags are not affected.

Of course, you’re limited to what calculations can be done on effective
addresses; but right off the top, you can multiply any GP register by 2, 3, 4, 5, 8,
and 9, while tossing in a constant too! It’s not arbitrary math, but multiplying
by 2, 3, 4, 5, 8, and 9 comes up regularly in assembly work, and you can
combine LEA with shifts and adds to do more complex math and ‘‘fill in the
holes.’’ You can also use multiple LEA instructions in a row. Two consecutive
LEA instructions can multiple a value by 10, which is useful indeed:

lea ebx,[ebx*2] ; Multiply ebx X 2

lea ebx,[ebx*4+ebx] ; Multiply ebx X 5 for a total of X 10

Some people consider this use of LEA a scurvy trick, but in all the years I’ve
worked in x86 assembly I’ve never seen a downside. Before throwing five or
six instructions into the pot to cook up a particular multiplication, see if two
or three LEAs can do it instead. LEA does its work in one machine cycle, and
x86 math doesn’t get any faster than that!

Chapter 9 ■ Bits, Flags, Branches, and Tables 317

The Burden of 16-Bit Registers
There’s a slightly dark flip side to protected mode’s graduation to 32-bit
registers: Using the 16-bit general-purpose registers AX, BX, CX, DX, SP, BP,
SI, and DI will slow you down. Now that 32-bit registers rule, making use
of the 16-bit registers is considered a special case that adds to the size of
the opcodes that the assembler generates, slowing your program code down.
Now, note well that by ‘‘use’’ I mean explicitly reference in your source code.
The AX register, for example, is still there inside the silicon of the CPU (as
part of the larger EAX register), and simply placing data there won’t slow you
down. You just can’t place data in AX by using ‘‘AX’’ as an operand in an
opcode and not slow down. This syntax generates a slow opcode:

mov ax,542

You can do the same thing as follows, and the opcode that NASM generates
will execute much more quickly:

mov eax,542

I haven’t mentioned this until now because I consider it an advanced topic:
You have to walk before you run, and trying to optimize your code before
you fully understand what makes code fast and what makes code slow is a
proven recipe for confusion and disappointment. A scattering of references
to the 16-bit registers in a program will not make the program significantly
slower. What you want to avoid is using 16-bit register references inside a
tight loop, where the loop will be executed thousands or tens of thousands of
times. (Or more!)

In some circumstances, both the 8-bit and 16-bit registers are absolutely
necessary—for example, when writing 8-bit or 16-bit values to memory.
NASM will not let you do this:

mov byte [ebx],eax

The BYTE qualifier makes the first operand an 8-bit operand, and NASM will
complain that there is a ‘‘mismatch in operand size.’’ If you need to write an
isolated 8-bit value (like an ASCII character) into memory, you need to put the
character in one of the 8-bit registers, like this:

mov byte [ebx],al

That generates a (moderately) slower opcode, but there’s no getting around
it. Keep in mind, with modern CPUs especially, that code performance of
individual opcodes is swamped by other CPU machinery like cache, hyper-
threading, prefetch, and so on. In general, statistical terms, using 32-bit registers

318 Chapter 9 ■ Bits, Flags, Branches, and Tables

makes it more likely that your code will run faster, but a scattering of 16-bit
or 8-bit register references will not make a huge difference except in certain
cases (like within tight loops) and even then, the performance hit is difficult to
predict and almost impossible to quantify.

Put simply: use 32-bit registers wherever you can, but don’t agonize over it.

Character Table Translation

There is a type of table lookup that is (or perhaps was) so common that Intel’s
engineers baked a separate instruction into the x86 architecture for it. The type
of table lookup is what I was alluding to toward the end of Chapter 8: character
conversion. In the early 1980s I needed to convert character sets in various ways,
the simplest of which was forcing all lowercase characters to uppercase. And
in Chapter 8 we built a simple program that went through a file one buffer at a
time, bringing in characters, converting all lowercase characters to uppercase,
and then writing them all back out again to a new file.

The conversion itself was simple: by relying on the ASCII chart for the
relationship between all uppercase characters and their associated lowercase
characters, we could convert a lowercase character to uppercase by simply
subtracting 20h (32) from the character. That’s reliable, but in a sense a sort of
special case. It just so happens that ASCII lowercase characters are always 32
higher on the chart than uppercase characters. What do you do if you need to
convert all ‘‘vertical bar’’ (ASCII 124) characters to exclamation points? (I had
to do this once because one of the knucklehead mainframes couldn’t digest
vertical bars.) You can write special code for each individual case that you
have to deal with . . .

. . . or you can use a translation table.

Translation Tables
A translation table is a special type of table, and it works the following way:
you set up a table of values, with one entry for every possible value that must
be translated. A number (or a character, treated as a number) is used as an
index into the table. At the index position in the table is a value that is used
to replace the original value that was used as the index. In short, the original
value indexes into the table and finds a new value that replaces the original
value, thus translating the old value to a new one.

We’ve done this once before, in the hexdump1.asm program in Listing 9-1.
Recall the Digits table:

Digits: db “0123456789ABCDEF“

Chapter 9 ■ Bits, Flags, Branches, and Tables 319

This is a translation table, though I didn’t call it that at the time. The idea, if
you recall, was to separate the two 4-bit halves of an 8-bit byte, and convert
those 4-bit values into ASCII characters representing hexadecimal digits. The
focus at the time was separating the bytes into two nybbles via bitwise logical
operations, but translation was going on there as well.

The translation was accomplished by these three instructions:

mov al,byte [esi+ecx] ; Put a byte from the input buffer into al

and al,0Fh ; Mask out all but the low nybble

mov al,byte [Digits+eax] ; Look up the char equivalent of nybble

The first instruction loads a byte from the input buffer into the 8-bit AL
register. The second instruction masks out all but the low nybble of AL. The
third instruction does a memory fetch: It uses the value in AL to index into the
Digits table, and brings back whatever value was in the ALth entry in the table.
(This has to be done using EAX between the brackets, because AL cannot take
part in effective address calculations. Just remember that AL is the lowest-order
byte in the EAX register.) If AL held 0, then the effective address calculation
added 0 to the address of Digits, bringing back the 0th table entry, which is
the ASCII character for 0. If AL held 5, then effective address calculation added
5 to the address of Digits, bringing back the fifth table entry, which is the
ASCII character for 5. And so it would go, for all 16 possible values that may be
expressed in a 4-bit nibble. Basically, the code is used to translate a number to its
corresponding ASCII character.

There are only 16 possible hexadecimal digits, so the conversion table in
hexdump1 only needs to be 16 bytes long. A byte contains enough bits to
represent 256 different values, so if we’re going to translate byte-size values,
we need a table with 256 entries. Technically, the ASCII character set only
uses the first 128 values, but as I described earlier in this book, the ‘‘high’’
128 values have often been assigned to special characters such as non-English
letters, ‘‘box-draw’’ characters, mathematical symbols, and so on. One common
use of character translation is to convert any characters with values higher
than 128 to something lower than 128, to avoid havoc in older systems that
can’t deal with extended ASCII values.

Such a table is easy enough to define in an assembly language program:

UpCase:

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,09h,0Ah,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,21h,22h,23h,24h,25h,26h,27h,28h,29h,2Ah,2Bh,2Ch,2Dh,2Eh,2Fh

db 30h,31h,32h,33h,34h,35h,36h,37h,38h,39h,3Ah,3Bh,3Ch,3Dh,3Eh,3Fh

db 40h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh

db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,5Bh,5Ch,5Dh,5Eh,5Fh

db 60h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh

db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,7Bh,7Ch,7Dh,7Eh,20h

320 Chapter 9 ■ Bits, Flags, Branches, and Tables

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

The UpCase table is defined in 16 lines of 16 separate hexadecimal values.
The fact that it’s split across 16 lines is purely for readability on the screen or
printed page and does not affect the binary table that NASM generates in the
output .o file. Once it’s in binary, it’s 256 8-bit values in a row.

A quick syntactic note here: When defining tables (or any data structure
containing multiple predefined values), commas are used to separate values
within a single definition. There is no need for commas at the end of the
lines of the DB definitions in the table. Each DB definition is separate and
independent, but because they are adjacent in memory, we can treat the 16 DB
definitions as a single table.

Any translation table can be thought of as expressing one or more ‘‘rules’’
governing what happens during the translation process. The UpCase table
shown above expresses these translation rules:

All lowercase ASCII characters are translated to uppercase.

All printable ASCII characters less than 127 that are not lowercase are
translated to themselves. (They’re not precisely ‘‘left alone,’’ but translated
to the same characters.)

All ‘‘high’’ character values from 127 through 255 are translated to the
ASCII space character (32, or 20h.)

All non-printable ASCII characters (basically, values 0–31, plus 127) are
translated to spaces except for values 9 and 10.

Character values 9 and 10 (tab and EOL) are translated as themselves.

Not bad for a single data item, eh? (Just imagine how much work it would
be to do all that fussing purely with machine instructions!)

Translating with MOV or XLAT
So how do you use the UpCase table? Very simply:

1. Load the character to be translated into AL.

2. Create a memory reference using AL as the base term and UpCase as the
displacement term, and MOV the byte at the memory reference into AL,
replacing the original value used as the base term.

Chapter 9 ■ Bits, Flags, Branches, and Tables 321

The MOV instruction would look like this:

mov al,byte [UpCase+al]

There’s only one problem: NASM won’t let you do this. The AL register
can’t take part in effective address calculations, nor can any of the other 8-bit
registers. Enter XLAT.

The XLAT instruction is hard-coded to use certain registers in certain ways.
Its two operands are implicit:

The address of the translation table must be in EBX.

The character to be translated must be in AL.

The translated character will be returned in AL, replacing the character
originally placed in AL.

With the registers set up in that way, the XLAT instruction is used all by its
lonesome:

xlat

I’ll be honest here: XLAT is less of a win than it used to be. In 32-bit protected
mode, the same thing can be done with the following instruction:

mov al,byte [UpCase+eax]

There’s only one catch: you must clear out any ‘‘leftover’’ values in the high
24 bits of EAX, or you could accidentally index far beyond the bounds of the
translation table. The XLAT instruction uses only AL for the index, ignoring
whatever else might be in the rest of EAX. Clearing EAX before loading the
value to be translated into AL is done with a simple XOR EAX,EAX or MOV EAX,0.

In truth, given XLAT’s requirement that it use AL and EBX, it’s a wash, but
the larger topic of character translation via tables is really what I’m trying
to present here. Listing 9-2 puts it all into action. The program as shown
does exactly what the uppercaser2 program in Listing 8-2 does: it forces all
lowercase characters in an input file to uppercase and writes them to an output
file. I didn’t call it ‘‘uppercaser3’’ because it is a general-purpose character
translator. In this particular example, it translates lowercase characters to
uppercase, but that’s simply one of the rules that the UpCase table expresses.
Change the table, and you change the rules. You can translate any or all of the
256 different values in a byte to any 256 value or values.

I’ve added a second table to the program for you to experiment with. The
Custom table expresses these rules:

All printable ASCII characters less than 127 are translated to themselves.
(Again, they’re not precisely ‘‘left alone’’ but translated to the same
characters.)

322 Chapter 9 ■ Bits, Flags, Branches, and Tables

All ‘‘high’’ character values from 127 through 255 are translated to the
ASCII space character (32, or 20h).

All non-printable ASCII characters (basically, values 0–31, plus 127) are
translated to spaces except for values 9 and 10.

Character values 9 and 10 (tab and EOL) are translated as themselves.

Basically, it leaves all printable characters (plus tab and EOL) alone, and
converts all other character values to 20h, the space character. You can
substitute the label Custom for UpCase in the program, make changes to the
Custom table, and try it out. Convert that pesky vertical bar to an exclamation
point. Change all ‘‘Z’’ characters to ‘‘Q.’’ Changing the rules is done by
changing the table. The code does not change at all!

Listing 9-2: xlat1.asm

; Executable name : XLAT1

; Version : 1.0

; Created date : 2/11/2009

; Last update : 4/5/2009

; Author : Jeff Duntemann

; Description : A simple program in assembly for Linux, using NASM 2.05,

; demonstrating the use of the XLAT instruction to alter text streams.

;

; Build using these commands:

; nasm -f elf -g -F stabs xlat1.asm

; ld -o xlat1 xlat1.o

;

SECTION .data ; Section containing initialized data

StatMsg: db “Processing...“,10

StatLen: equ $-StatMsg

DoneMsg: db “...done!“,10

DoneLen: equ $-DoneMsg

; The following translation table translates all lowercase characters to

; uppercase. It also translates all non-printable characters to spaces,

; except for LF and HT.

UpCase:

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,09h,0Ah,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,21h,22h,23h,24h,25h,26h,27h,28h,29h,2Ah,2Bh,2Ch,2Dh,2Eh,2Fh

db 30h,31h,32h,33h,34h,35h,36h,37h,38h,39h,3Ah,3Bh,3Ch,3Dh,3Eh,3Fh

db 40h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh

db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,5Bh,5Ch,5Dh,5Eh,5Fh

db 60h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh

db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,7Bh,7Ch,7Dh,7Eh,20h

Chapter 9 ■ Bits, Flags, Branches, and Tables 323

Listing 9-2: xlat1.asm (continued)

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

; The following translation table is “stock“ in that it translates all

; printable characters as themselves, and converts all non-printable

; characters to spaces except for LF and HT. You can modify this to

; translate anything you want to any character you want.

Custom:

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,09h,0Ah,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,21h,22h,23h,24h,25h,26h,27h,28h,29h,2Ah,2Bh,2Ch,2Dh,2Eh,2Fh

db 30h,31h,32h,33h,34h,35h,36h,37h,38h,39h,3Ah,3Bh,3Ch,3Dh,3Eh,3Fh

db 40h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh

db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,5Bh,5Ch,5Dh,5Eh,5Fh

db 60h,61h,62h,63h,64h,65h,66h,67h,68h,69h,6Ah,6Bh,6Ch,6Dh,6Eh,6Fh

db 70h,71h,72h,73h,74h,75h,76h,77h,78h,79h,7Ah,7Bh,7Ch,7Dh,7Eh,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

SECTION .bss ; Section containing uninitialized data

READLEN equ 1024 ; Length of buffer

ReadBuffer: resb READLEN ; Text buffer itself

SECTION .text ; Section containing code

global _start ; Linker needs this to find the entry point!

_start:

nop ; This no-op keeps gdb happy...

; Display the “I’m working...“ message via stderr:

mov eax,4 ; Specify sys_write call

mov ebx,2 ; Specify File Descriptor 2: Standard error

mov ecx,StatMsg ; Pass offset of the message

mov edx,StatLen ; Pass the length of the message

(continued)

324 Chapter 9 ■ Bits, Flags, Branches, and Tables

Listing 9-2: xlat1.asm (continued)

int 80h ; Make kernel call

; Read a buffer full of text from stdin:

read:

mov eax,3 ; Specify sys_read call

mov ebx,0 ; Specify File Descriptor 0: Standard Input

mov ecx,ReadBuffer ; Pass offset of the buffer to read to

mov edx,READLEN ; Pass number of bytes to read at one pass

int 80h

mov ebp,eax ; Copy sys_read return value for safekeeping

cmp eax,0 ; If eax=0, sys_read reached EOF

je done ; Jump If Equal (to 0, from compare)

; Set up the registers for the translate step:

mov ebx,UpCase ; Place the offset of the table into ebx

mov edx,ReadBuffer ; Place the offset of the buffer into edx

mov ecx,ebp ; Place the number of bytes in the buffer into ecx

; Use the xlat instruction to translate the data in the buffer:

; (Note: the commented out instructions do the same work as XLAT;

; un-comment them and then comment out XLAT to try it!

translate:

; xor eax,eax ; Clear high 24 bits of eax

mov al,byte [edx+ecx] ; Load character into AL for translation

; mov al,byte [UpCase+eax] ; Translate character in AL via table

xlat ; Translate character in AL via table

mov byte [edx+ecx],al ; Put the translated char back in the buffer

dec ecx ; Decrement character count

jnz translate ; If there are more chars in the buffer, repeat

; Write the buffer full of translated text to stdout:

write:

mov eax,4 ; Specify sys_write call

mov ebx,1 ; Specify File Descriptor 1: Standard output

mov ecx,ReadBuffer ; Pass offset of the buffer

mov edx,ebp ; Pass the # of bytes of data in the buffer

int 80h ; Make kernel call

jmp read ; Loop back and load another buffer full

; Display the “I’m done“ message via stderr:

done:

mov eax,4 ; Specify sys_write call

mov ebx,2 ; Specify File Descriptor 2: Standard error

mov ecx,DoneMsg ; Pass offset of the message

mov edx,DoneLen ; Pass the length of the message

int 80h ; Make kernel call

; All done! Let’s end this party:

Chapter 9 ■ Bits, Flags, Branches, and Tables 325

Listing 9-2: xlat1.asm (continued)

mov eax,1 ; Code for Exit Syscall

mov ebx,0 ; Return a code of zero

int 80H ; Make kernel call

Tables Instead of Calculations

Standardization among computer systems has made character translation a lot
less common than it used to be, but translation tables can be extremely useful
in other areas. One of them is to perform faster math. Consider the following
table:

Squares: db 0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225

No mystery here: Squares is a table of the squares of the numbers from
0–15. If you needed the square of 14 in a calculation, you could use MUL, which
is very slow as instructions go, and requires two GP registers; or you could
simply fetch down the result from the Squares table:

mov ecx,14

mov al,byte [Squares+ecx]

Voila! EAX now contains the square of 14. You can do the same trick with
XLAT, though it requires that you use certain registers. Also remember that
XLAT is limited to 8-bit quantities. The Squares table shown above is as large
a squares value table as XLAT can use, because the next square value (of 16) is
256, which cannot be expressed in 8 bits.

Making the entries of a squares value lookup table 16 bits in size will enable
you to include the squares of all integers up to 255. And if you give each entry
in the table 32 bits, you can include the squares of integers up to 65,535—but
that would be a very substantial table!

I don’t have the space in this book to go very deeply into floating-point
math, but using tables to look up values for things like square roots was once
done very frequently. In recent years, the inclusion of math processors right on
the CPU makes such techniques a lot less compelling. Still, when confronted
with an integer math challenge, you should always keep the possibility of
using table lookups somewhere in the corner of your mind.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

