As you’ve seen by now, my general method for explaining things starts with the “view from a height” and then moves down toward the details. That’s how I do things because that’s how people learn: by plugging individual facts into a larger framework that makes it clear how those facts relate to one another. It’s possible (barely) to move from details to the big picture, but across 56 years of beating my head against various subjects in the pursuit of knowledge, it’s become very clear that having the overall framework in place first makes it a lot easier to establish all those connections between facts. It’s like carefully placing stones into a neat pile before shoveling them into a box. If the goal is to get the stones into a box, it’s much better to have the box in place before starting to pick up the stones.

And so it is here. The big picture is mostly in place. From now on in this book, we’ll be looking at the details of assembly code, and seeing how they fit into that larger view.

Bits Is Bits (and Bytes Is Bits)

Assembly language is big on bits.

Bits, after all, are what bytes are made of, and one essential assembly language skill is building bytes and taking them apart again. A technique called *bit mapping* is widely used in assembly language. Bit mapping assigns
special meanings to individual bits within a byte to save space and squeeze the last little bit of utility out of a given amount of memory.

There is a family of instructions in the x86 instruction set that enables you to manipulate the bits within the bytes by applying Boolean logical operations between bytes on a bit-by-bit basis. These are the bitwise logical instructions: **AND**, **OR**, **XOR**, and **NOT**. Another family of instructions enables you to slide bits back and forth within a single byte or word. These are the most frequently used shift/rotate instructions: **ROL**, **ROR**, **RCL**, **RCR**, **SHL**, and **SHR**. (There are a few others that I will not be discussing in this book.)

Bit Numbering

Dealing with bits requires that we have a way of specifying which bits we’re dealing with. By convention, bits in assembly language are numbered, starting from 0, at the least-significant bit in the byte, word, or other item we’re using as a bitmap. The least-significant bit is the one with the least value in the binary number system. It’s also the bit on the far right if you write the value down as a binary number in the conventional manner.

I’ve shown this in Figure 9-1, for a 16-bit word. Bit numbering works exactly the same way no matter how many bits you’re dealing with: bytes, words, double words, or more. Bit 0 is always on the right-hand end, and the bit numbers increase toward the left.

![Figure 9-1: Bit numbering](image)

When you count bits, start with the bit on the right, and number them from 0.

“It’s the Logical Thing to Do, Jim...”

Boolean logic sounds arcane and forbidding, but remarkably, it reflects the realities of ordinary thought and action. The Boolean operator **AND**, for instance, pops up in many of the decisions you make every day of your life. For example, to write a check that doesn’t bounce, you must have money in your checking account and checks in your checkbook. Neither alone will do the job. You can’t write a check that you don’t have, and a check without money behind it will bounce. People who live out of their checkbooks (and they always seem to end up ahead of me in the checkout line at Safeway) must use the **AND** operator frequently.

When mathematicians speak of Boolean logic, they manipulate abstract values called True and False. The **AND** operator works like this. **Condition1**
AND Condition2 will be considered True if both Condition1 and Condition2 are True. If either condition is False, the result will be False.

There are in fact four different combinations of the two input values, so logical operations between two values are usually summarized in a form called a truth table. The truth table for the logical operator AND (not the AND instruction yet; we’ll get to that shortly) is shown in Table 9-1.

Table 9-1: The AND Truth Table for Formal Logic

<table>
<thead>
<tr>
<th>CONDITION1</th>
<th>OPERATOR</th>
<th>CONDITION2</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>AND</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>AND</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>AND</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>AND</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

There’s nothing mysterious about the truth table. It’s just a summary of all possibilities of the AND operator as applied to two input conditions. The important thing to remember about AND is that only when both input values are True is the result also True.

That’s the way mathematicians see AND. In assembly language terms, the AND instruction looks at two bits and yields a third bit based on the values of the first two bits. By convention, we consider a 1 bit to be True and a 0 bit to be False. The logic is identical; we’re just using different symbols to represent True and False. Keeping that in mind, we can rewrite AND’s truth table to make it more meaningful for assembly language work (see Table 9-2).

Table 9-2: The AND Truth Table for Assembly Language

<table>
<thead>
<tr>
<th>BIT 1</th>
<th>OPERATOR</th>
<th>BIT 2</th>
<th>RESULT BIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AND</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>AND</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>AND</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>AND</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The AND Instruction

The AND instruction embodies this concept in the x86 instruction set. The AND instruction performs the AND logical operation on two like-size operands and
replaces the destination operand with the result of the operation as a whole. (Remember that the destination operand, as always, is the operand closest to the mnemonic.) In other words, consider this instruction:

```c
and al, bl
```

What will happen here is that the CPU will perform a gang of eight bitwise AND operations on the eight bits in AL and BL. Bit 0 of AL is ANDed with bit 0 of BL, bit 1 of AL is ANDed with bit 1 of BL, and so on. Each AND operation generates a result bit, and that bit is placed in the destination operand (here, AL) after all eight AND operations occur. This is a common thread among machine instructions that perform some operation on two operands and produce a result: The result replaces the first operand (the destination operand) and not the second!

Masking Out Bits

A major use of the AND instruction is to isolate one or more bits out of a byte value or a word value. Isolate here simply means to set all unwanted bits to a reliable 0 value. As an example, suppose we are interested in testing bits 4 and 5 of a value to see what those bits are. To do that, we have to be able to ignore the other bits (bits 0 through 3 and 6 through 7), and the only way to safely ignore bits is to set them to 0. AND is the way to go. We set up a bit mask in which the bit numbers that we want to inspect and test are set to 1, and the bits we wish to ignore are set to 0. To mask out all bits but bits 4 and 5, we must set up a mask in which bits 4 and 5 are set to 1, with all other bits at 0. This mask in binary is 00110000B, or 30H. (To verify it, count the bits from the right-hand end of the binary number, starting with 0.) This bit mask is then ANDed against the value in question. Figure 9-2 shows this operation in action, with the 30H bit mask just described and an initial value of 9DH.

The three binary values involved are shown laid out vertically, with the least-significant bit (that is, the right-hand end) of each value at the top. You should be able to trace each AND operation and verify it by looking at Table 9-2.

The end result is that all bits except bits 4 and 5 are guaranteed to be 0 and can thus be safely ignored. Bits 4 and 5 could be either 0 or 1. (That’s why we need to test them; we don’t know what they are.) With the initial value of 9DH, bit 4 turns out to be a 1, and bit 5 turns out to be a 0. If the initial value were something else, bits 4 and 5 could both be 0, both be 1, or some combination of the two.

Don’t forget: the result of the AND instruction replaces the destination operand after the operation is complete.
Chapter 9 Bits, Flags, Branches, and Tables 283

AND AL, BL

<table>
<thead>
<tr>
<th>AL : 9DH 10011101</th>
<th>BL : 30H 00110000</th>
<th>After Execution: AL : 10H 00010000</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSB Value</td>
<td>Mask Result</td>
<td>Result</td>
</tr>
<tr>
<td>1 AND 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 AND 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 AND 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 AND 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 AND 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 AND 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 AND 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 AND 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 AND 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 AND 0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 9-2: The anatomy of an AND instruction

The OR Instruction

Closely related to the AND logical operation is OR, which, like the AND logical operation, has an embodiment with the same name in the x86 instruction set. Structurally, the OR instruction works identically to AND. Only its truth table is different: While AND requires that both its operands be 1 for the result to be 1, OR is satisfied that at least one operand has a 1 value. The truth table for OR is shown in Table 9-3.

Table 9-3: The OR Truth Table for Assembly Language

<table>
<thead>
<tr>
<th>BIT 1</th>
<th>OPERATOR</th>
<th>BIT 2</th>
<th>RESULT BIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>OR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>OR</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>OR</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Because it’s unsuitable for isolating bits, OR is used much more rarely than AND.
The XOR Instruction

In a class by itself is the exclusive OR operation, embodied in the XOR instruction. XOR, again, does in broad terms what AND and OR do: it performs a logical operation on its two operands, and the result replaces the destination operand. The logical operation, however, is exclusive or, meaning that the result is 1 only if the two operands are different (that is, 1 and 0 or 0 and 1). The truth table for XOR, shown in Table 9-4, should make this slightly slippery notion a little clearer.

Table 9-4: The XOR Truth Table for Assembly Language

<table>
<thead>
<tr>
<th>BIT 1</th>
<th>OPERATOR</th>
<th>BIT 2</th>
<th>RESULT BIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>XOR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>XOR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>XOR</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>XOR</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Look over Table 9-4 carefully! In the first and last cases, where the two operands are the same, the result is 0. In the middle two cases, where the two operands are different, the result is 1.

Some interesting things can be done with XOR, but most of them are a little arcane for a beginners’ book. One non-obvious use of XOR is this: XORing any value against itself yields 0. In other words, if you execute the XOR instruction with both operands as the same register, that register will be cleared to 0:

```c
xor eax,eax ; Zero out the eax register
```

In the old days, this was faster than loading a 0 into a register from immediate data using MOV. Although that’s no longer the case, it’s an interesting trick to know. How it works should be obvious from reading the truth table, but to drive it home I’ve laid it out in Figure 9-3.

Follow each of the individual XOR operations across the figure to its result value. Because each bit in AL is XORed against itself, in every case the XOR operations happen between two operands that are identical. Sometimes both are 1, sometimes both are 0, but in every case the two are the same. With the XOR operation, when the two operands are the same, the result is always 0. Voila! Zero in a register.
Chapter 9 = Bits, Flags, Branches, and Tables 285

The NOT Instruction

Easiest to understand of all the bitwise logical instructions is NOT. The truth table for NOT is simpler than the others we’ve looked at because NOT only takes one operand. And what it does is simple as well: NOT takes the state of each bit in its single operand and changes that bit to its opposite state. What was 1 becomes 0, and what was 0 becomes 1, as shown in Table 9-5.

Table 9-5: The NOT Truth Table for Assembly Language

<table>
<thead>
<tr>
<th>BIT</th>
<th>OPERATOR</th>
<th>RESULT BIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NOT</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>NOT</td>
<td>0</td>
</tr>
</tbody>
</table>

Segment Registers Don’t Respond to Logic!

You won’t be directly accessing the x86 segment registers until you get into the depths of operating system programming. The segment registers belong to the OS, and user-space programs cannot change them in any way.

But even when you begin working at the operating-system level, the segment registers have significant limitations. One such limitation is that they cannot
be used with any of the bitwise logic instructions. If you try, the assembler will hand you an “Illegal use of segment register” error. If you need to perform a logical operation on a segment register, you must first copy the segment register’s value into one of the registers EAX, EBX, ECX, EDX, EBP, ESI, or EDI; perform the logical operation on the GP register; and then copy the result in the GP register back into the segment register.

The general-purpose registers are called “general purpose” for a reason, and the segment registers are not in any way general-purpose. They are specialists in memory addressing, and if you have to modify segment values, the general approach is to do the work in a general-purpose register and then move the modified value into the segment register in question.

Shifting Bits

The other way of manipulating bits within a byte is a little more straightforward: you shift them to one side or the other. There are a few wrinkles to the process, but the simplest shift instructions are pretty obvious: **SHL** SHifts its operand Left, whereas **SHR** SHifts its operand Right.

All of the shift instructions (including the slightly more complex ones I’ll describe a little later) have the same general form, illustrated here by the **SHL** instruction:

```assembly
shl <register/memory>,<count>
```

The first operand is the target of the shift operation—that is, the value that you’re going to be shifting. It can be register data or memory data, but not immediate data. The second operand specifies the number of bits by which to shift.

Shift By What?

This `<count>` operand has a peculiar history. On the ancient 8086 and 8088, it could be one of two things: the immediate digit 1 or the register CL. *(Not CX!)* If you specified the count as 1, then the shift would be by one bit. If you wished to shift by more than one bit at a time, you had to load the shift count into register CL. In the days before the x86 general-purpose registers became truly general-purpose, counting things used to be CX’s (and hence CL’s) “hidden agenda.” It would count shifts, passes through loops, string elements, and a few other things. That’s why it’s sometimes called the *count register* and can be remembered by the C in *count*.

Although you can shift by a number as large as 255, it really only makes sense to use shift count values up to 32. If you shift any bit in a double word
by 32, you shift it completely out of the 32-bit double word—not to mention out of any byte or word!

Starting with the 286 and for all more recent x86 CPUs, the `<count>` operand may be any immediate value from 1 to 255. As Linux requires at least a 386 to run, the ancient restrictions on where the shift count value had to be no longer apply when you’re programming under Linux.

How Bit Shifting Works

Understanding the shift instructions requires that you think of the numbers being shifted as binary numbers, and not hexadecimal or decimal numbers. (If you’re fuzzy on binary notation, take another focused pass through Chapter 2.) A simple example would start with register AX containing a value of 0B76FH. Expressed as a binary number (and hence as a bit pattern), 0B76FH is as follows:

```
1011011101101111
```

Keep in mind that each digit in a binary number is one bit. If you execute an `SHL AX, 1` instruction, what you’d find in AX after the shift is the following:

```
0110111011011110
```

A 0 has been inserted at the right-hand end of the number, and the whole shebang has been bumped toward the left by one digit. Notice that a 1 bit has been bumped off the left end of the number into cosmic nothingness.

Bumping Bits into the Carry Flag

Well, not exactly cosmic nothingness. The last bit shifted out of the left end of the binary number is bumped into a temporary bucket for bits called the *Carry flag*, generally abbreviated as CF. The Carry flag is one of those informational bits gathered together as the EFlags register, which I described in Chapter 7. You can test the state of the Carry flag with a branching instruction, as I’ll explain a little later in this chapter.

However, keep in mind when using shift instructions that a lot of different instructions use the Carry flag—not only the shift instructions. If you bump a bit into the Carry flag with the intent of testing that bit later to see what it is, test it before you execute another instruction that affects the Carry flag. This includes all the arithmetic instructions, all the bitwise logical instructions, a few other miscellaneous instructions—and, of course, all the other shift instructions.

If you shift a bit into the Carry flag and then immediately execute another shift instruction, that first bit will be bumped off the end of the world and into cosmic nothingness.
The Rotate Instructions

That said, if a bit’s destiny is not to be lost in cosmic nothingness, you need to use the rotate instructions \(\text{RCL}, \text{RCR}, \text{ROL}, \text{and ROR} \) instead. The rotate instructions are almost identical to the shift instructions, but with a crucial difference: a bit bumped off one end of the operand reappears at the opposite end of the operand. As you rotate an operand by more than one bit, the bits march steadily in one direction, falling off the end and immediately reappearing at the opposite end. The bits thus “rotate” through the operand as the rotate instruction is executed.

Like so many things, this shows better than it tells. Take a look at Figure 9-4. The example shown here is the \(\text{ROL} \) (Rotate Left) instruction, but the \(\text{ROR} \) instruction works the very same way, with the bits moving in the opposite direction. An initial binary value of 10110010 (0B2h) is placed in AL. When an \(\text{ROL AL, 1} \) instruction is executed, all the bits in AL march toward the left by one position. The 1-bit in bit 7 exits AL stage left, but runs around and reappears immediately from stage right.

![Figure 9-4: How the rotate instructions work](image)

Again, \(\text{ROR} \) works exactly the same way, but the movement of bits is from left to right instead of (as with \(\text{ROL} \)) right to left. The number of bits by which an operand is rotated can be either an immediate value or a value in CL.

There is a second pair of rotate instructions in the x86 instruction set: \(\text{RCR} \) (Rotate Carry Right) and \(\text{RCL} \) (Rotate Carry Left). These operate as \(\text{ROL} \) and \(\text{ROR} \) do, but with a twist: The bits that are shifted out the end of an operand and reenter the operand at the beginning travel by way of the Carry flag. The path that any single bit takes in a rotate through CF is thus one bit longer than it would be in \(\text{ROL} \) and \(\text{ROR} \). I’ve shown this graphically in Figure 9-5.

As with the shift instructions, there’s no advantage to rotating a value by more than 31 bits. (If you rotate a value by 32 bits, you end up with the same
value in the operand that you started with.) The rotate instructions bump bits off one end of the operand and then feed them back into the opposite end of the operand, to begin the trip again. If you mentally follow a single bit through the rotation process, you’ll realize that after 32 rotations, any given bit is where it was when you started rotating the value. What’s true of one bit is true of them all, so 31 rotations is as much as will be useful on a 32-bit value. This is why, in protected mode programming (and on the old 286 as well), the shift-by count is truncated to 5 bits before the instruction executes. After all, the largest value expressible in 5 bits is \(32!\)

Setting a Known Value into the Carry Flag

It’s also useful to remember that previous instructions can leave values in CF, and those values will be rotated into an operand during an RCL or RCR instruction. Some people have the mistaken understanding that CF is forced to 0 before a shift or rotate instruction, which is not true. If another instruction leaves a 1-bit in CF immediately before an RCR or RCL instruction, that 1-bit will obediently enter the destination operand, whether you want it to or not.

If starting out a rotate with a known value in CF is important, there is a pair of x86 instructions that will do the job for you: CLC and STC. CLC clears the Carry flag to 0. STC sets the Carry flag to one. Neither instruction takes an operand, and neither has any other effects beyond changing the value in the Carry flag.

Bit-Bashing in Action

As you saw in earlier chapters, Linux has a fairly convenient method for displaying text to your screen. The problem is that it only displays text—if
you want to display a numeric value from a register as a pair of hex digits, Linux won’t help. You first have to convert the numeric value into its string representation, and then display the string representation by calling the `sys_write` kernel service via `INT 80h`.

Converting hexadecimal numbers to hexadecimal digits isn’t difficult, and the code that does the job demonstrates several of the new concepts we’re exploring in this chapter. The code in Listing 9-1 is the bare-bones core of a hex dump utility, rather like a read-only version of the Bless Hex Editor. When you redirect its input from a file of any kind, it will read that file 16 bytes at a time, and display those 16 bytes in a line, as 16 hexadecimal values separated by spaces.

Listing 9-1: hexdump1.asm

```assembly
; Executable name : hexdump1
; Version : 1.0
; Created date : 4/4/2009
; Last update : 4/4/2009
; Author : Jeff Duntemann
; Description : A simple program in assembly for Linux, using NASM 2.05, demonstrating the conversion of binary values to hexadecimal strings.
; It acts as a very simple hex dump utility for files, though without the ASCII equivalent column.
;
; Run it this way:
; hexdump1 < (input file)
;
; Build using these commands:
; nasm -f elf -g -F stabs hexdump1.asm
; ld -o hexdump1 hexdump1.o

SECTION .bss ; Section containing uninitialized data
BUFFLEN equ 16 ; We read the file 16 bytes at a time
Buff: resb BUFFLEN ; Text buffer itself

SECTION .data ; Section containing initialized data
HexStr: db ' 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00',10
HEXLEN equ $-HexStr

Digits: db '0123456789ABCDEF'

SECTION .text ; Section containing code

global _start ; Linker needs this to find the entry point!
```
Listing 9-1: hexdump1.asm (continued)

Listing 9-1: hexdump1.asm (continued)

```asm
_listart:
nop ; This no-op keeps gdb happy...

; Read a buffer full of text from stdin:
_read:
  mov eax,3 ; Specify sys_read call
  mov ebx,0 ; Specify File Descriptor 0: Standard Input
  mov ecx,Buff ; Pass offset of the buffer to read to
  mov edx,BUFFLEN ; Pass number of bytes to read at one pass
  int 80h ; Call sys_read to fill the buffer
  mov ebp,eax ; Save # of bytes read from file for later
  cmp eax,0 ; If eax=0, sys_read reached EOF on stdin
             ; Jump If Equal (to 0, from compare)
             ; Set up the registers for the process buffer step:
  mov esi,Buff ; Place address of file buffer into esi
  mov edi,HexStr ; Place address of line string into edi
  xor ecx,ecx ; Clear line string pointer to 0

; Go through the buffer and convert binary values to hex digits:
_scan:
  xor eax,eax ; Clear eax to 0

  ; Here we calculate the offset into HexStr, which is the value in ecx X 3
  mov edx,ecx ; Copy the character counter into edx
  shl edx,1 ; Multiply pointer by 2 using left shift
  add edx,ecx ; Complete the multiplication X3

  ; Get a character from the buffer and put it in both eax and ebx:
  mov al,byte [esi+ecx] ; Put a byte from the input buffer into al
  mov ebx,eax ; Duplicate the byte in bl for second nybble

  ; Look up low nybble character and insert it into the string:
  and al,0Fh ; Mask out all but the low nybble
  mov al,byte [Digits+eax] ; Look up the char equivalent of nybble
  mov byte [HexStr+edx+2],al ; Write LSB char digit to line string

  ; Look up high nybble character and insert it into the string:
  shr bl,4 ; Shift high 4 bits of char into low 4 bits
  mov bl,byte [Digits+ebx] ; Look up char equivalent of nybble
  mov byte [HexStr+edx+1],bl ; Write MSB char digit to line string

  ; Bump the buffer pointer to the next character and see if we're done:
  inc ecx ; Increment line string pointer
  cmp ecx,ep ; Compare to the number of chars in the buffer
  jna Scan ; Loop back if ecx is <= number of chars in buffer

; Write the line of hexadecimal values to stdout:
```

(continued)
Listing 9-1: hexdump1.asm (continued)

```assembly
mov eax, 4 ; Specify sys_write call
mov ebx, 1 ; Specify File Descriptor 1: Standard output
mov ecx, HexStr ; Pass offset of line string
mov edx, HEXLEN ; Pass size of the line string
int 80h ; Make kernel call to display line string
jmp Read ; Loop back and load file buffer again

; All done! Let’s end this party:
Done:
    mov eax, 1 ; Code for Exit Syscall
    mov ebx, 0 ; Return a code of zero
    int 80H ; Make kernel call
```

The hexdump1 program is at its heart a filter program, and has the same
general filter machinery used in the uppercaser2 program from Chapter 8.
The important parts of the program for this discussion are the parts that read
16 bytes from the input buffer and convert them to a string of characters for
display to the Linux console. This is the code between the label Scan and the
INT 80h exit call. I’ll be referring to that block of code in the discussion that
follows.

Splitting a Byte into Two Nybbles

Remember that the values read by Linux from a file are read into memory as
binary values. Hexadecimal is a way of displaying binary values, and in order
to display binary values as displayable ASCII hexadecimal digits, you have to
do some converting.

Displaying a single 8-bit binary value requires two hexadecimal digits. The
bottom four bits in a byte are represented by one digit (the least-significant, or
rightmost, digit) and the top four bits in the byte are represented by another
digit (the most significant, or leftmost, digit). The binary value 11100110, for
example, is the equivalent of E6 in hex. (I covered all this in detail in Chapter 2.)
Converting an 8-bit value into two 4-bit digits must be done one digit at a time,
which means that we have to separate the single byte into two 4-bit quantities,
which are often called *nybbles*.

In the hexdump1 program, a byte is read from Buff and is placed in two
registers, EAX and EBX. This is done because separating the high from the low
nybble in a byte is destructive, in that we basically zero out the nybble that we
don’t want.

To isolate the low nybble in a byte, we need to *mask out* the unwanted
nybble. This is done with an AND instruction:

```assembly
    and al, 0Fh
```
The immediate constant 0Fh expressed in binary is 00001111. If you follow the operation through the AND truth table (Table 9-2) you’ll see that any bit ANDed against 0 is 0. We AND the high nybble of register AL with 0000, which zeros out anything that might be there. ANDing the low nybble against 1111 leaves whatever was in the low nibble precisely as it was.

When we’re done, we have the low nybble of the byte read from Buff in AL.

Shifting the High Nybble into the Low Nybble

Masking out the high nybble from the input byte in AL destroys it. We need the high nybble, but we have a second copy of the input byte in EBX, and that’s the copy from which we’ll extract the high nybble. As with the low nybble, we’ll actually work with the least significant eight bits of EBX, as BL. Remember that BL is just a different way of referring to the low eight bits of EBX. It’s not a different register. If a value is loaded into EBX, its least significant eight bits are in BL.

We could mask out the low nybble in BL with an AND instruction, leaving behind the high nybble, but there’s a catch: masking out the low four bits of a byte does not make the high four bits a nybble. We have to somehow move the high four bits of the input byte into the low four bits.

The fastest way to do this is simply to shift BL to the right by four bits. This is what the SHR BL, 4 instruction does. The low nybble is simply shifted off the edge of BL, into the Carry flag, and then out into cosmic nothingness. After the shift, what was the high nybble in BL is now the low nybble.

At this point, we have the low nybble of the input byte in AL, and the high nybble of the input byte in BL. The next challenge is converting the four-bit number in a nybble (like 1110) into its displayable ASCII hex digit—in this case, the character E.

Using a Lookup Table

In the .data section of the program is the definition of a very simple lookup table. The Digits table has this definition:

```assembly
Digits db '0123456789ABCDEF'
```

The important thing to note about the Digits table is that each digit occupies a position in the string whose offset from the start of the string is the value it represents. In other words, the ASCII character “0” is at the very start of the string, zero bytes offset from the string’s beginning. The character “7” lies seven bytes from the start of the string, and so on.

We “look up” a character in the Digits table using a memory reference:

```assembly
mov al,byte [Digits+eax]
```
As with most of assembly language, everything here depends on memory addressing. The first hex digit character in the lookup table is at the address in `Digits`. To get at the desired digit, we must index into the lookup table. We do this by adding an offset into the table to the address inside the brackets. This offset is the nybble in AL.

Adding the offset in AL to the address of `Digits` (using EAX) takes us right to the character that is the ASCII equivalent of the value in AL. I’ve drawn this out graphically in Figure 9-6.

There are two possibly confusing things about the MOV instruction that fetches a digit from `Digits` and places it in AL:

- We must use EAX in the memory reference rather than AL, because AL cannot take part in effective address calculations. Don’t forget that AL is
“inside’’ EAX! (More on effective address calculations a little later in this chapter.)

- We are replacing the nybble in AL with its character equivalent. The instruction first fetches the character equivalent of the nybble from the table, and then stores the character equivalent back into AL. The nybble that was in AL is now gone.

So far, we’ve read a character from the lookup table into AL. The conversion of that nybble is done. The next task sounds simple but is actually surprisingly tricky: writing the ASCII hex digit character now in AL into the display string at HexStr.

Multiplying by Shifting and Adding

The hexdump1 program reads bytes from a file and displays them in lines, with 16 bytes represented in hex in each line. A portion of the output from the program is shown here:

```
3B 20 20 45 78 65 63 75 74 61 62 6C 65 20 6E 61
6D 65 20 3A 20 45 40 54 53 59 53 43 40 4C 4C 0D
0A 3B 20 20 56 65 72 73 69 6F 6E 20 20 20 20 20
20 20 20 3A 20 30 2E 30 0D 0A 3B 20 20 43 72
30 2F 30 8F 2F 2F 2F 20 20 20 20 20 20 20 20 20
2F 30 2F 30 30 30 30 30 30 30 30 30 30 30 30 30
68 6F 72 20 20 20 20 20 20 20 20 20 20 20 20 20
```

Each of these lines is a display of the same item: HexStr, a string of 48 characters with an EOL on the end. Each time hexdump1 reads a block of 16 bytes from the input file, it formats them as ASCII hex digits and inserts them into HexStr. In a sense, this is another type of table manipulation, except that instead of looking up something in a table, we’re writing values into a table, based on an index.

One way to think about HexStr is as a table of 16 entries, each entry three characters long (see Figure 9-7). In each entry, the first character is a space, and the second and third characters are the hex digits themselves. The space characters are already there, as part of the original definition of HexStr in the .data section. The original “empty” HexStr has 0 characters in all hex digit positions. To “fill” HexStr with “real” data for each line’s display, we have to scan through HexStr in an assembly language loop, writing the low nybble character and the high nybble character separately.

The tricky business here is that for each pass through the loop, we have to “bump” the index into HexStr by three instead of just by one. The offset of one of those three-byte entries in HexStr is the index of the entry multiplied...
by three. I’ve already described the `MUL` instruction, which handles arbitrary unsigned multiplication in the x86 instruction set. `MUL`, however, is very slow as instructions go. It has other limitations as well, especially the ways in which it requires specific registers for its implicit operands.

Fortunately, there are other, faster ways to multiply in assembly, with just a little cleverness. These ways are based on the fact that it’s very easy and very fast to multiply by powers of two, using the `SHL` (Shift Left) instruction. It may not be immediately obvious to you, but each time you shift a quantity one bit to the left, you’re multiplying that quantity by two. Shift a quantity two bits to the left, and you’re multiplying it by four. Shift it three bits to the left, and you’re multiplying by eight, and so on.

You can take my word for it, or you can actually watch it happen in a sandbox. Set up a fresh sandbox in Kate and enter the following instructions:

```assembly
mov al,3
shl al,1
shl al,1
shl al,2
```

Build the sandbox and load the executable into Insight. Set the EAX display field in the Registers view to Decimal. (This must be done after the sandbox program is running, by right-clicking on the EAX field and selecting Decimal from the context menu.) Then step through the instructions, watching the value of EAX change in the Registers view for each step.

The first instruction loads the value 3 into AL. The next instruction shifts AL to the left by one bit. The value in AL becomes 6. The second `SHL` instruction shifts AL left by one bit again, and the 6 becomes 12. The third `SHL` instruction shifts AL by two bits, and the 12 becomes 48. I’ve shown this graphically in Figure 9-8.
What if you want to multiply by 3? Easy: you multiply by 2 and then add one more copy of the multiplicand to the product. In the hexdump1 program, it’s done this way:

```asm
mov edx, ecx ; Copy the character counter into edx
shl edx, 1 ; Multiply pointer by 2 using left shift
add edx, ecx ; Complete the multiplication X3
```

Here, the multiplicand is loaded from the loop counter ECX into EDX. EDX is then shifted left by one bit to multiply it by 2. Finally, ECX is added once to the product EDX to make it multiplication by 3.

Multiplication by other numbers that are not powers of two may be done by combining a `SHL` and one or more `ADDs`. To multiply a value in ECX by 7, you would do this:

```asm
mov edx, ecx ; Keep a copy of the multiplicand in ecx
shl edx, 2 ; Multiply edx by 4
add edx, ecx ; Makes it X 5
add edx, ecx ; Makes it X 6
add edx, ecx ; Makes it X 7
```

This may look clumsy, but remarkably enough, it’s still faster than using `MUL`! (There’s an even faster way to multiply by 3 that I’ll show you a little later in this chapter.)

Once you understand how the string table `HexStr` is set up, writing the hex digits into it is straightforward. The least-significant hex digit is in AL, and the
most significant hex digit is in BL. Writing both hex digits into HexString is done with a three-part memory address:

```
mov byte [HexStr+edx+2],al ; Write the LSB char digit to line string
mov byte [HexStr+edx+1],bl ; Write the MSB char digit to line string
```

Refer back to Figure 9-7 to work this out for yourself: you begin with the address of HexStr as a whole. EDX contains the offset of the first character in a given entry. To obtain the address of the entry in question, you add HexStr and EDX. However, that address is of the first character in the entry, which in HexStr is always a space character. The position of the LSB digit in an entry is the entry’s offset +2, and the position of the MSB digit in an entry is the entry’s offset +1. The address of the LSB digit is therefore HexStr + the offset of the entry, + 2. The address of the MSB digit is therefore HexStr + the offset of the entry, + 1.

Flags, Tests, and Branches

From a height, the idea of conditional jump instructions is simple, and without it, you won’t get much done in assembly. I’ve been using conditional jumps informally in the last few example programs without saying much about them, because the sense of the jumps was pretty obvious from context, and they were necessary to demonstrate other things. But underneath the simplicity of the idea of assembly language jumps lies a great deal of complexity. It’s time to get down and cover that in detail.

Unconditional Jumps

A jump is just that: an abrupt change in the flow of instruction execution. Ordinarily, instructions are executed one after the other, in order, moving from low memory toward high memory. Jump instructions alter the address of the next instruction to be executed. Execute a jump instruction, and zap! All of a sudden you’re somewhere else. A jump instruction can move execution forward in memory or backward. It can bend execution back into a loop. (It can also tie your program logic in knots.)

There are two kinds of jumps: conditional and unconditional. An unconditional jump is a jump that always happens. It takes this form:

```
jmp <label>
```

When this instruction executes, the sequence of execution moves to the instruction located at the label specified by <label>. It’s just that simple.
Conditional Jumps

A *conditional* jump instruction is one of those fabled tests I introduced in Chapter 1. When executed, a conditional jump tests something—usually one, occasionally two, or, much more rarely, three of the flags in the EFlags register. If the flag or flags being tested happen to be in a particular state, execution will jump to a label somewhere else in the code segment; otherwise, it simply falls through to the next instruction in sequence.

This two-way nature is important. A conditional jump instruction either jumps or it falls through. Jump or no jump. It can’t jump to one of two places, or three. Whether it jumps or not depends on the current value of a very small set of bits within the CPU.

As I mentioned earlier in this book while discussing the EFlags register as a whole, there is a flag that is set to 1 by certain instructions when the result of that instruction is zero: the Zero flag (ZF). The `DEC` (DECrement) instruction is a good example. `DEC` subtracts one from its operand. If by that subtraction the operand becomes zero, ZF is set to 1. One of the conditional jump instructions, `JZ` (Jump if Zero), tests ZF. If ZF is found set to 1, then a jump occurs, and execution transfers to the label after the ZF mnemonic. If ZF is found to be 0, then execution falls through to the next instruction in sequence. This may be the commonest conditional jump in the entire x86 instruction set. It’s often used when you’re counting a register down to zero while executing a loop, and when the count register goes to zero by virtue of the `DEC` instruction, the loop ends, and execution picks up again right after the loop.

Here’s a simple (if slightly bizarre) example, using instructions you should already understand:

```assembly
mov word [RunningSum], 0 ; Clear the running total
mov ecx, 17 ; We’re going to do this 17 times

WorkLoop:
    add word [RunningSum], 3 ; Add three to the running total
    dec ecx ; Subtract 1 from the loop counter
    jz SomewhereElse ; If the counter is zero, we’re done!
    jmp WorkLoop
```

Before the loop begins, we set up a value in ECX, which acts as the count register and contains the number of times we’re going to run through the loop. The body of the loop is where something gets done on each pass through the loop. In this example it’s a single `ADD` instruction, but it could be dozens or hundreds of instructions long.

After the work of the loop is accomplished, the count register is decremented by 1 with a `DEC` instruction. Immediately afterward, the `JZ` instruction tests the Zero flag. Decrementing ECX from 17 to 16, or from 4 to 3, does not set ZF, and the `JZ` instruction simply falls through. The instruction after `JZ` is
an unconditional jump instruction, which obediently and consistently takes execution back to the WorkLoop label every time.

Now, decrementing ECX from 1 to 0 does set ZF, and that’s when the loop ends. JZ finally takes us out of the loop by jumping to SomewhereElse (a label in the larger program not shown here), and execution leaves the loop.

If you’re sharp enough, you may realize that this is a lousy way to set up a loop. (That doesn’t mean it’s never been done, or that you yourself may not do it in a late-night moment of impatience.) What we’re really looking for each time through the loop is when a condition—the Zero flag—isn’t set, and there’s an instruction for that too.

Jumping on the Absence of a Condition

There are quite a few conditional jump instructions, of which I’ll discuss several but not all in this book. Their number is increased by the fact that almost every conditional jump instruction has an alter ego: a jump when the specified condition is not set to 1.

The JZ instruction provides a good example of jumping on a condition. JZ jumps to a new location in the code segment if the Zero flag (ZF) is set to 1. JZ’s alter ego is JNZ (Jump if Not Zero). JNZ jumps to a label if ZF is 0, and falls through if ZF is 1.

This may be confusing at first, because JNZ jumps when ZF is equal to 0. Keep in mind that the name of the instruction applies to the condition being tested and not necessarily the binary bit value of the flag. In the previous code example, JZ jumped when the DEC instruction decremented a counter to zero. The condition being tested is something connected with an earlier instruction, not simply the state of ZF.

Think of it this way: a condition raises a flag. “Raising a flag” means setting the flag to 1. When one of numerous instructions forces an operand to a value of zero (which is the condition), the Zero flag is raised. The logic of the instruction refers to the condition, not to the flag.

As an example, let’s improve the little loop shown earlier by changing the loop logic to use JNZ:

```
mov word [RunningSum], 0 ; Clear the running total
mov ecx, 17 ; We're going to do this 17 times

; WorkLoop:
add word [RunningSum], 3 ; Add three to the running total
dec ecx ; Subtract 1 from the loop counter
jnz WorkLoop ; If the counter is zero, we're done!
```

The JZ instruction has been replaced with a JNZ instruction. That makes much more sense, since to close the loop we have to jump, and we only close the loop while the counter is greater than 0. The jump back to label WorkLoop will happen only while the counter is greater than 0.
Once the counter decrements to 0, the loop is considered finished. *JNZ* falls through, and the code that follows the loop (not shown here) executes. The point is that if you can position the program’s next task immediately after the *JNZ* instruction, you don’t need to use the *JMP* instruction *at all*. Instruction execution will just flow naturally into the next task that needs performing. The program will have a more natural and less convoluted top-to-bottom flow and will be easier to read and understand.

Flags

Back in Chapter 7, I explained the EFlags register and briefly described the purposes of all the flags it contains. Most flags are not terribly useful, especially when you’re first starting out as a programmer. The Carry flag (CF) and the Zero flag (ZF) will be 90 percent of your involvement in flags as a beginner, with the Direction flag (DF), Sign flag (SF), and Overflow flag (OF) together making up an additional 99.98 percent. It might be a good idea to reread that part of Chapter 7 now, just in case your grasp of flag etiquette has gotten a little rusty.

As explained earlier, *JZ* jumps when ZF is 1, whereas *JNZ* jumps when ZF is 0. Most instructions that perform some operation on an operand (such as *AND*, *OR*, *XOR*, *INC*, *DEC*, and all arithmetic instructions) set ZF according to the results of the operation. On the other hand, instructions that simply move data around (such as *MOV*, *XCHG*, *PUSH*, and *POP*) do not affect ZF or any of the other flags. (Obviously, *POPF* affects the flags by popping the top-of-stack value into them.) One irritating exception is the *NOT* instruction, which performs a logical operation on its operand but does not set any flags—even when it causes its operand to become 0. Before you write code that depends on flags, check your instruction reference to ensure that you have the flag etiquette down correctly for that instruction. The x86 instruction set is nothing if not quirky.

Comparisons with CMP

One major use of flags is in controlling loops. Another is in comparisons between two values. Your programs will often need to know whether a value in a register or memory is equal to some other value. Further, you may want to know if a value is greater than a value or less than a value if it is not equal to that value. There is a jump instruction to satisfy every need, but something has to set the flags for the benefit of the jump instruction. The *CMP* (CoMPare) instruction is what sets the flags for comparison tasks.

CMP’s use is straightforward and intuitive. The second operand is compared with the first, and several flags are set accordingly:

```
cmp <op1>,<op2> ; Sets OF, SF, ZF, AF, PF, and CF
```
The sense of the comparison can be remembered if you simply recast the comparison in arithmetic terms:

\[\text{Result} = \text{op1} - \text{op2} \]

\text{CMP} is very much a subtraction operation whereby the result of the subtraction is thrown away, and only the flags are affected. The second operand is subtracted from the first. Based on the results of the subtraction, the other flags are set to appropriate values.

After a \text{CMP} instruction, you can jump based on several arithmetic conditions. People who have a reasonable grounding in math, and FORTRAN or Pascal programmers, will recognize the conditions: \text{Equal}, \text{Not equal}, \text{Greater than}, \text{Less than}, \text{Greater than or equal to}, and \text{Less than or equal to}. The sense of these operators follows from their names and is exactly like the sense of the equivalent operators in most high-level languages.

\section*{A Jungle of Jump Instructions}

There is a bewildering array of jump instruction mnemonics, but those dealing with arithmetic relationships sort out well into just six categories, one category for each of the six preceding conditions. Complication arises from the fact that there are \textit{two} mnemonics for each machine instruction—for example, \text{JLE} (Jump if Less than or Equal) and \text{JNG} (Jump if Not Greater than). These two mnemonics are \textit{synonyms} in that the assembler generates the identical binary opcode when it encounters either mnemonic. The synonyms are a convenience to you, the programmer, in that they provide two alternate ways to think about a given jump instruction. In the preceding example, \textit{Jump if Less than or Equal to} is logically identical to \textit{Jump if Not Greater than}. (Think about it!) If the importance of the preceding compare were to see whether one value is less than or equal to another, you’d use the \text{JLE} mnemonic. Conversely, if you were testing to be sure that one quantity was not greater than another, you’d use \text{JNG}. The choice is yours.

Another complication is that there is a separate set of instructions for signed and unsigned arithmetic comparisons. I haven’t spoken much about assembly language math in this book, and thus haven’t said much about the difference between signed and unsigned quantities. A \textit{signed} quantity is one in which the high bit of the quantity is considered a built-in flag indicating whether the quantity is negative. If that bit is 1, then the quantity is considered negative. If that bit is 0, then the quantity is considered positive.

Signed arithmetic in assembly language is complex and subtle, and not as useful as you might immediately think. I won’t be covering it in detail in this book, though nearly all assembly language books treat it to some extent. All you need know to get a high-level understanding of signed arithmetic is that
in signed arithmetic, negative quantities are legal and the most significant bit of a value is treated as the sign bit. (If the sign bit is set to 1, then the value is considered negative.)

Unsigned arithmetic, on the other hand, does not recognize negative numbers, and the most significant bit is just one more bit in the binary number expressed by the quantity.

“Greater Than” Versus “Above”

To tell the signed jumps apart from the unsigned jumps, the mnemonics use two different expressions for the relationship between two values:

- **Signed values** are thought of as being *greater than* or *less than*. For example, to test whether one signed operand is greater than another, you would use the **JG** (Jump if Greater) mnemonic after a **CMP** instruction.

- **Unsigned values** are thought of as being *above* or *below*. For example, to tell whether one unsigned operand is greater than (above) another, you would use the **JA** (Jump if Above) mnemonic after a **CMP** instruction.

Table 9-6 summarizes the arithmetic jump mnemonics and their synonyms. Any mnemonics containing the words *above* or *below* are for unsigned values, whereas any mnemonics containing the words *greater* or *less* are for signed values. Compare the mnemonics with their synonyms and note how the two represent opposite viewpoints from which to look at identical instructions.

Table 9-6 simply serves to expand the mnemonics into a more comprehensible form and associate a mnemonic with its synonym. Table 9-7, on the other hand, sorts the mnemonics by logical condition and according to their use with signed and unsigned values. Also listed in Table 9-7 are the flags whose values are tested by each jump instruction. Notice that some of the jump instructions require one of two possible flag values in order to take the jump, while others require *both* of two flag values.

Several of the signed jumps compare two of the flags against one another. **JG**, for example, will jump when either ZF is 0, or when the Sign flag (SF) is equal to the Overflow flag (OF). I won’t spend any more time explaining the nature of the Sign flag or the Overflow flag. As long as you have the sense of each instruction under your belt, understanding exactly how the instructions test the flags can wait until you’ve gained some programming experience.

Some people have trouble understanding how the **JE** and **JZ** mnemonics are synonyms, as are **JNE** and **JNZ**. Think again of the way a comparison is done within the CPU: the second operand is subtracted from the first, and if the result is 0 (indicating that the two operands were in fact equal), then the Zero flag is set to 1. That’s why **JE** and **JZ** are synonyms: both are simply testing the state of the Zero flag.
Table 9-6: Jump Instruction Mnemonics and Their Synonyms

<table>
<thead>
<tr>
<th>MNEMONICS</th>
<th>SYNONYMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA</td>
<td>Jump if Above</td>
</tr>
<tr>
<td>JNBE</td>
<td>Jump if Not Below or Equal</td>
</tr>
<tr>
<td>JAE</td>
<td>Jump if Above or Equal</td>
</tr>
<tr>
<td>JNB</td>
<td>Jump if Not Below</td>
</tr>
<tr>
<td>JB</td>
<td>Jump if Below</td>
</tr>
<tr>
<td>JNAE</td>
<td>Jump if Not Above or Equal</td>
</tr>
<tr>
<td>JBE</td>
<td>Jump if Below or Equal</td>
</tr>
<tr>
<td>JNA</td>
<td>Jump if Not Above</td>
</tr>
<tr>
<td>JE</td>
<td>Jump if Equal</td>
</tr>
<tr>
<td>JZ</td>
<td>Jump if result is Zero</td>
</tr>
<tr>
<td>JNE</td>
<td>Jump if Not Equal</td>
</tr>
<tr>
<td>JNZ</td>
<td>Jump if result is Not Zero</td>
</tr>
<tr>
<td>JG</td>
<td>Jump if Greater</td>
</tr>
<tr>
<td>JNLE</td>
<td>Jump if Not Less than or Equal</td>
</tr>
<tr>
<td>JGE</td>
<td>Jump if Greater or Equal</td>
</tr>
<tr>
<td>JNL</td>
<td>Jump if Not Less</td>
</tr>
<tr>
<td>JL</td>
<td>Jump if Less</td>
</tr>
<tr>
<td>JNG</td>
<td>Jump if Not Greater</td>
</tr>
<tr>
<td>JLE</td>
<td>Jump if Less or Equal</td>
</tr>
</tbody>
</table>

Looking for 1-Bits with TEST

The x86 instruction set recognizes that bit testing is done a lot in assembly language, and it provides what amounts to a CMP instruction for bits: TEST. TEST performs an AND logical operation between two operands, and then sets the flags as the AND instruction would, without altering the destination operation, as AND would. Here’s the TEST instruction syntax:

```
test <operand>,<bit mask>
```

The bit mask operand should contain a 1 bit in each position where a 1 bit is to be sought in the operand, and 0 bits in all the other bits.

What TEST does is perform the AND logical operation between the instruction’s destination operand and the bit mask, and then set the flags as the AND instruction would do. The result of the AND operation is discarded, and the destination operand doesn’t change. For example, if you want to determine whether bit 3 of AX is set to 1, you would use this instruction:

```
test ax,08h ; Bit 3 in binary is 00001000B, or 08h
```

Bit 3, of course, does not have the numeric value 3—you have to look at the bit pattern of the mask and express it as a binary or hexadecimal value. (Bit 3 represents the value 8 in binary.) Using binary for literal constants is perfectly legal in NASM, and often the clearest expression of what you’re doing when you’re working with bit masks:

```
test ax,00001000B ; Bit 3 in binary is 00001000B, or 08h
```
Table 9-7: Arithmetic Tests Useful After a CMP Instruction

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>PASCAL OPERATOR</th>
<th>UNSIGNED VALUES</th>
<th>JUMPS WHEN</th>
<th>SIGNED VALUES</th>
<th>JUMPS WHEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal</td>
<td>=</td>
<td>JE</td>
<td>ZF=1</td>
<td>JE</td>
<td>ZF=1</td>
</tr>
<tr>
<td>Not Equal</td>
<td><></td>
<td>JNE</td>
<td>ZF=0</td>
<td>JNE</td>
<td>ZF=0</td>
</tr>
<tr>
<td>Greater than</td>
<td>></td>
<td>JA</td>
<td>CF=0 and ZF=0</td>
<td>JG</td>
<td>ZF=0 or SF=OF</td>
</tr>
<tr>
<td>Not Less than or equal to</td>
<td>JNBE</td>
<td>CF=0 and ZF=0</td>
<td>JNLE</td>
<td>ZF=0 or SF=OF</td>
<td></td>
</tr>
<tr>
<td>Less than</td>
<td><</td>
<td>JB</td>
<td>CF=1</td>
<td>JL</td>
<td>SF<>OF</td>
</tr>
<tr>
<td>Not Greater than or equal to</td>
<td>JNAE</td>
<td>CF=1</td>
<td>JNGE</td>
<td>SF<>OF</td>
<td></td>
</tr>
<tr>
<td>Greater than or equal to</td>
<td>>=</td>
<td>JAE</td>
<td>CF=0</td>
<td>JGE</td>
<td>SF=OF</td>
</tr>
<tr>
<td>Not Less than</td>
<td>JNB</td>
<td>CF=0</td>
<td>JNL</td>
<td>SF=OF</td>
<td></td>
</tr>
<tr>
<td>Less than or equal to</td>
<td><=</td>
<td>JBE</td>
<td>CF=1 or ZF=1</td>
<td>JLE</td>
<td>ZF=1 or SF<>OF</td>
</tr>
<tr>
<td>Not Greater than</td>
<td>JNA</td>
<td>CF=1 or ZF=1</td>
<td>JNG</td>
<td>ZF=1 or SF<>OF</td>
<td></td>
</tr>
</tbody>
</table>

Destination operand AX doesn’t change as a result of the operation, but the AND truth table is asserted between AX and the binary pattern 00001000. If bit 3 in AX is a 1 bit, then the Zero flag is cleared to 0. If bit 3 in AX is a 0 bit, then the Zero flag is set to 1. Why? If you AND 1 (in the bit mask) with 0 (in AX), you get 0. (Look it up in the AND truth table, shown previously in Table 9-2.) And if all eight bitwise AND operations come up 0, the result is 0, and the Zero flag is raised to 1, indicating that the result is 0.

Key to understanding TEST is thinking of TEST as a sort of “Phantom of the Opcode,” where the opcode is AND. TEST puts on a mask (as it were) and pretends to be AND, but then doesn’t follow through with the results of the operation. It simply sets the flags as though an AND operation had occurred.

The CMP instruction is another Phantom of the Opcode and bears the same relation to SUB as TEST bears to AND. CMP subtracts its second operand from its first, but doesn’t follow through and store the result in the first operand. It just
sets the flags as though a subtraction had occurred. As you’ve already seen, this can be mighty useful when combined with conditional jump instructions.

Here’s something important to keep in mind: TEST is only useful for finding 1 bits. If you need to identify 0 bits, you must first flip each bit to its opposite state with the NOT instruction. NOT changes all 1 bits to 0 bits, and all 0 bits to 1 bits. Once all 0 bits are flipped to 1 bits, you can test for a 1 bit where you need to find a 0 bit. (Sometimes it helps to map it out on paper to keep it all straight in your head.)

Finally, TEST will not reliably test for two or more 1 bits in the operand at one time. TEST doesn’t check for the presence of a bit pattern; it checks for the presence of a single 1 bit. In other words, if you need to confirm that both bits 4 and 5 are set to 1, TEST won’t hack it.

Looking for 0 Bits with BT

As I explained earlier, TEST has its limits: it’s not cut out for determining when a bit is set to 0. TEST has been with us since the very earliest X86 CPUs, but the 386 and newer processors have an instruction that enables you to test for either 0 bits or 1 bits. BT (Bit Test) performs a very simple task: it copies the specified bit from the first operand into the Carry flag (CF). In other words, if the selected bit was a 1 bit, the Carry flag becomes set. If the selected bit was a 0 bit, the Carry flag is cleared. You can then use any of the conditional jump instructions that examine and act on the state of CF.

BT is easy to use. It takes two operands: the destination operand is the value containing the bit in question; the source operand is the ordinal number of the bit that you want to test, counting from 0:

\[
\text{bt } \text{<value containing bit>}, \text{<bit number>}
\]

Once you execute a BT instruction, you should immediately test the value in the Carry flag and branch based on its value. Here’s an example:

\[
\text{bt } \text{eax}, 4 \quad ; \text{Test bit 4 of AX}
\]
\[
\text{jnc } \text{quit} \quad ; \text{We're all done if bit 4 = 0}
\]

Note something to be careful of, especially if you’re used to using TEST: You are not creating a bit mask. With BT’s source operand you are specifying the ordinal number of a bit. The literal constant 4 shown above is the bit’s number (counting from 0), not the bit’s value, and that’s a crucial difference.

Also note that we’re branching if CF is not set; that’s what JNC (Jump if Not Carry) does.

I hate to discuss code efficiency too much in a beginners’ book, but there is a caution here: the BT instruction is pretty slow as instructions go—and bit-banging is often something you do a great many times inside tight loops,
where instruction speed can be significant. Using it here and there is fine, but if you’re inside a loop that executes thousands or millions of times, consider whether there might be a better way to test bits. Creaky old TEST is much faster, but TEST only tests for 1 bits. Depending on your application, you may be able to test for 0 bits more quickly another way, perhaps shifting a value into the Carry flag with SHL or SHR, using NOT to invert a value. There are no hard-and-fast rules, and everything depends on the dynamics of what you’re doing. (That’s why I’m not teaching optimization systematically in this book!)

Protected Mode Memory Addressing in Detail

In so many ways, life is better now. And I’m not just talking about modern dentistry, plug-and-play networking, and four-core CPUs. I used to program in assembly for the real-mode 8088 CPUs in the original IBM PC—and I remember real-mode memory addressing.

Like dentistry in the 1950s, 8088-based real-mode memory addressing was just . . . painful. It was a hideous ratbag of restrictions and gotchas and limits and Band-Aids, all of which veritably screamed out that the CPU was desperately hungry for more transistors on the die. Addressing memory, for example, was limited to EBX and EBP in most instructions, which meant a lot of fancy footwork when several separate items had to be addressed in memory all at the same time. And thinking about segment management still makes me shudder.

Well, in the past 20 years our x86 CPUs got pretty much all the transistors they wanted, and the bulk of those infuriating real-mode memory addressing limitations have simply gone away. You can address memory with any of the general-purpose registers. You can even address memory directly with the stack pointer ESP, something that its 16-bit predecessor SP could not do. (You shouldn’t change the value in ESP without considerable care, but ESP can now take part in addressing modes from which the stack pointer was excluded in 16-bit real-mode land.)

Protected mode on the 386 CPU introduced a general-purpose memory-addressing scheme in which all the GP registers can participate equally. I’ve sketched it out in Figure 9-9, which may well be the single most important figure in this entire book. Print it out and tape it to the wall next to your machine. Refer to it often. Memory addressing is the key skill in assembly language work. If you don’t understand that, nothing else matters at all.

When I first studied and understood this scheme, wounds still bleeding from 16-bit 8088 real-mode segmented memory addressing, it looked too good to be true. But true it is! Here are the rules:

- The base and index registers may be any of the 32-bit general-purpose registers, including ESP.
The displacement may be any 32-bit constant. Obviously, 0, while legal, isn’t useful.

- The scale must be one of the values 1, 2, 4, or 8. That’s it! The value 1 is legal but doesn’t do anything useful, so it’s never used.

- The index register is multiplied by the scale before the additions are done. In other words, it’s not (base + index) × scale. Only the index register is multiplied by the scale.

- All of the elements are optional and may be used in almost any combination.

- 16-bit and 8-bit registers may not be used in memory addressing.

This last point is worth enlarging upon. There are several different ways you can address memory, by gathering the components in the figure in different combinations. Examples are shown in Table 9-8.

Effective Address Calculations

Each of the rows in Table 9-8 summarizes a method of expressing a memory address in 32-bit protected mode. All but the first two involve a little arithmetic among two or more terms within the brackets that signify an address. This arithmetic is called *effective address calculation*, and the result of the calculation is the *effective address*. The term is “effective address” in that it means that address that will ultimately be used to read or write memory, irrespective of how it is expressed. Effective address calculation is done by the instruction, when the instruction is executed.

The effective address in the Base scheme is simply the 32-bit quantity stored in the GP register between the brackets. No calculation is involved, but what you see in the source code is not a literal or symbolic address. So although the
Table 9-8: Protected Mode Memory-Addressing Schemes

<table>
<thead>
<tr>
<th>SCHEME</th>
<th>EXAMPLE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>[BASE]</td>
<td>[edx]</td>
<td>Base only</td>
</tr>
<tr>
<td>[DISPLACEMENT]</td>
<td>[0F3h] or [<variable>]</td>
<td>Displacement, either literal constant or symbolic address</td>
</tr>
<tr>
<td>[BASE + DISPLACEMENT]</td>
<td>[ecx + 033h]</td>
<td>Base plus displacement</td>
</tr>
<tr>
<td>[BASE + INDEX]</td>
<td>[eax + ecx]</td>
<td>Base plus index</td>
</tr>
<tr>
<td>[INDEX × SCALE]</td>
<td>[ebx * 4]</td>
<td>Index times scale</td>
</tr>
<tr>
<td>[INDEX × SCALE + DISPLACEMENT]</td>
<td>[eax * 8 + 65]</td>
<td>Index times scale plus displacement</td>
</tr>
<tr>
<td>[BASE + INDEX × SCALE]</td>
<td>[esp + edi * 2]</td>
<td>Base plus index times scale</td>
</tr>
<tr>
<td>[BASE + INDEX × SCALE + DISPLACEMENT]</td>
<td>[esi + ebp * 4 + 9]</td>
<td>Base plus index times scale plus displacement</td>
</tr>
</tbody>
</table>

instruction is coded with a register name between the brackets, the address that will be sent out to the memory system when the code executes is stored inside the register.

The only case in which the effective address is right there on the line with the instruction mnemonic would be a literal address within the brackets. This is almost never done, because it’s extremely unlikely that you will know a precise 32-bit numeric address at assembly time.

Most of the time there’s some arithmetic going on. In the Base + Index scheme, for example, the contents of the two GP registers between the brackets are added when the instruction is executed to form the effective address.

Displacements

Among the several components of a legal address, the displacement term is actually one of the most slippery to understand. As I indicated in the previous paragraph, the displacement term can be a literal address, but in all my years of protected-mode assembly programming I’ve never done it, nor seen anyone else do it. When the displacement term stands alone, it is virtually always a symbolic address. By that I mean a named data item that you’ve defined in your .data or .bss sections, like the HexStr variable from the hexdump1 program in Listing 9-1:

 mov eax, [HexStr]
What is placed in EAX here is the address given to the variable HexStr when the program is loaded into memory. Like all addresses, it's just a number, but it's determined at runtime rather than at assembly time, as a literal constant numeric address would be.

A lot of beginners get confused when they see what looks like two displacement terms between the brackets in a single address. The confusion stems from the fact that if NASM sees two (or more) constant values in a memory reference, it will combine them at assembly time into a single displacement value. That's what's done here:

```
mov eax, [HexStr+3]
```

The address referred to symbolically by the variable named HexStr is simply added to the literal constant 3 to form a single displacement value. The key characteristic of a displacement term is that it is not in a register.

Base + Displacement Addressing

A simple and common addressing scheme is Base + Displacement, and I demonstrated it in the hexdump1 program in Listing 9-1. The instruction that inserts an ASCII character into the output line looks like this:

```
mov byte [HexStr+edx+2]
```

This is a perfect example of a case where there are two displacement terms that NASM combines into one. The variable name HexStr resolves to a number (the 32-bit address of HexStr) and it is easily added to the literal constant 2, so there is actually only one base term (EDX) and one displacement term.

Base + Index Addressing

Perhaps the most common single addressing scheme is Base + Index, in which the effective address is calculated by adding the contents of two GP registers within the brackets. I demonstrated this addressing scheme in Chapter 8, in the uppercaser2 program in Listing 8-2. Converting a character in the input buffer from lowercase to uppercase is done by subtracting 20h from it:

```
sub byte [ebp+ecx], 20h
```

The address of the buffer was earlier placed in EBP, and the number in ECX is the offset from the buffer start of the character being processed during any given pass through the loop. Adding the address of the buffer with an offset
into the buffer yields the effective address of the character acted upon by the

SUB instruction.

But wait... why not use Base + Displacement addressing? This instruction would be legal:

\[
\text{sub byte [Buff+ecx],20h}
\]

However, if you remember from the program (and it would be worth looking at it again, and reading the associated text), we had to decrement the address of Buff by one before beginning the loop. But wait some more... could we have NASM do that little tweak by adding a second displacement term of -1? Indeed we could, and it would work. The central loop of the uppercaser2 program would then look like this:

; Set up the registers for the process buffer step:
 mov ecx,esi ; Place the number of bytes read into ecx
 mov ebp,Buff ; Place address of buffer into ebp
 ; dec ebp ** We don't need this instruction anymore! **

; Go through the buffer and convert lowercase to uppercase characters:
Scan:
 cmp byte [Buff-1+ecx],61h ; Test input char against lowercase 'a'
 jb Next ; If below 'a' in ASCII, not lowercase
 cmp byte [Buff-1+ecx],7Ah ; Test input char against lowercase 'z'
 ja Next ; If above 'z' in ASCII, not lowercase
 ; At this point, we have a lowercase char
 sub byte [Buff-1+ecx],20h ; Subtract 20h to give uppercase...
Next:
 dec ecx ; Decrement counter
 jnz Scan ; If characters remain, loop back

The initial DEC EBP instruction is no longer necessary. NASM does the math, and the address of Buff is decremented by one within the effective address expression when the program loads. This is actually the correct way to code this particular loop, and I thought long and hard about whether to show it in Chapter 8 or wait until I could explain memory addressing schemes in detail.

Some people find the name “Base + Displacement” confusing, because in most cases the Displacement term contains an address, and the Base term is a register containing an offset into a data item at that address. The word “displacement” resembles the word “offset” in most people’s experience, hence the confusion. This is one reason I don’t emphasize the names of the various memory addressing schemes in this book, and certainly don’t recommend memorizing the names. Understand how effective address calculation works, and ignore the names of the schemes.
Index × Scale + Displacement Addressing

Base + Index addressing is what you’ll typically use to scan through a buffer in memory byte by byte, but what if you need to access a data item in a buffer or table where each data item is not a single byte, but a word or a double word? This requires slightly more powerful memory addressing machinery.

As a side note here, the word array is the general term for what I’ve been calling a buffer or a table. Other writers may call a table an array, especially when the context of the discussion is a high-level language, but all three terms cook down to the same definition: a sequence of data items in memory, all of the same size and same internal definition. In the programs shown so far, we’ve looked at only very simple tables and buffers consisting of a sequence of one-byte values all in a row. The Digits table in the hexdump1 program in Listing 9-1 is such a table:

```
Digits: db "0123456789ABCDEF"
```

It’s 16 single-byte ASCII characters in a row in memory. You can access the “C” character within Digits this way, using Base + Displacement addressing:

```
mov ecx,12
mov edx,[Digits+ecx]
```

What if you have a table containing 32-bit values? Such a table is easy enough to define:

```
Sums: dd "15,12,6,0,21,14,4,0,0,19"
```

The DD qualifier tells NASM that each item in the table Sums is a 32-bit double word quantity. The literal constants plug a numeric value into each element of the table. The address of the first element (here, 15) in Sums is just the address of the table as a whole, contained in the variable Sums.

What is the address of the second element, 12? And how do you access it from assembly code? Keep in mind that memory is addressed byte by byte, and not double word by double word. The second entry in the table is at an offset of four bytes into the table. If you tried to reference the second entry in the table using an address [Sums + 1], you would get one of the bytes inside the first table element’s double word, which would not be useful.

This is where the concept of scaling comes in. An address may include a scale term, which is a multiplier and may be any of the literal constants 2, 4, or 8. (The literal constant 1 is technically legal, but because the scale is a multiplier, 1 is not a useful scale value.) The product of the index and the scale terms is added to the displacement to give the effective address. This is known as the Index × Scale + Displacement addressing scheme.
Typically, the scale term is the size of the individual elements in the table. If your table consists of 2-byte word values, the scale would be 2. If your table consists of 4-byte double word values, the scale would be 4. If your table consists of 8-byte quad word values, the scale would be 8.

The best way to explain this is with a diagram. In Figure 9-10, we’re confronted with the address [DDTable + ECX*4]. DDTable is a table of double word (32-bit) values. DDTable’s address is the displacement. The ECX register is the index, and for this example it contains 2, which is the number of the table element that you want to access. Because it’s a table of 4-byte double words, the scale value is 4.

![Figure 9-10: How address scaling works](image)

Because each table element is four bytes in size, the offset of element #2 from the start of the table is 8. The effective address of the element is calculated by first multiplying the index by the scale, and then adding the product to the address of DDTable. There it is!

Other Addressing Schemes

Any addressing scheme that includes scaling works just this way. The differences lie in what other terms are figured into the effective address. The Base + Index \times Scale scheme adds a scaled index to a base value in a register rather than a displacement:

```
mov ecx, 2  ; Index is in ecx
```
mov ebp,DDTable ; Table address is in ebp
mov edx,[ebp+ecx*4] ; Put the selected element into edx

You won’t always be working with the address of a predefined variable like DDTable. Sometimes the address of the table will come from somewhere else, most often a two-dimensional table consisting of a number of subtables in memory, each subtable containing some number of elements. Such tables are accessed in two steps: first you derive the address of the inner table in the outer table, and then you derive the address of the desired element within the inner table.

The most familiar example of this sort of two-dimensional table is something I presented in earlier editions of this book, for DOS. The 25-line × 80-character text video memory buffer under DOS was a two-dimensional table. Each of the 25 lines was a table of 80 characters, and each character was represented by a 2-byte word. (One byte was the ASCII value, and the other byte specified attributes like color, underlining, and so on.) Therefore, the buffer as a whole was an overall table of 25 smaller tables, each containing 80 2-byte word values.

That sort of video access system died with DOS; Linux does not allow you direct access to PC video memory. It was done a lot in the DOS era, however, and is a good example of a two-dimensional table.

Scaling will serve you well for tables with 2-byte, 4-byte, or 8-byte elements. What if your table consists of 3-byte elements? Or 5-byte elements? Or 17-byte elements? Alas, in such cases you have to do some additional calculations in order to zero in on one particular element. Effective address calculation won’t do the whole job itself. I’ve already given you an example of such a table in Listing 9-1. The line display string is a table of 3-byte elements. Each element contains a space character followed by the two hex digit characters. Because the elements are each three characters long, scaling cannot be done within the instruction, and must be handled separately.

It’s not difficult. Scaling for the 3-byte elements in the HexStr table in the hexdump1 program is done like this:

mov edx,ecx ; Copy the character counter into edx
shl edx,1 ; Multiply counter by 2 using left shift
add edx,ecx ; Complete the multiplication X3

The calculation to multiply a value in EDX by 3 is done with a combination of an SHL instruction to multiply by 2, followed by an ADD instruction that adds a third copy of the index value to the shifted index value, effectively multiplying the original count value by 3.

Scaling for other index values can be done the same way. Scaling by 5 would be done by shifting the index value left by 2 bits, thus multiplying it by 4, followed by adding another copy of the index value to complete the multiplication by 5. In general terms, to scale an index value by X:
1. Find the largest power of 2 less than X.
2. Shift the index value left by that power of 2.
3. Add a copy of the original index value to the shifted copy as many times
 as it takes to complete the multiplication by X.

For example, if X is 11, the scale calculation would be done this way:

```asm
mov edx,ecx ; Copy the index into edx
shl edx,3 ; Multiply index by 8 by shifting counter left 3 times
add edx,ecx ; Add first of three additional copies of index
add edx,ecx ; Add second of three additional copies of index
add edx,ecx ; Add third of three additional copies of index
```

This works best for relatively small-scale values; once you get past 20 there
will be a lot of ADD instructions. At that point, the solution is not to calculate
the scale, but to look up the scale in a table specially defined for a given scale
value. For example, suppose your table elements are each 25 bytes long. You
could define a table with multiples of 25:

```c
ScaleValues: dd 0,25,50,75,100,125,150,175,200,225,250,275,300
```

To scale an index value of 6 for an entry size of 25, you would look up the
product of 6 × 25 in the table this way:

```asm
mov ecx,6
mov eax,[ScaleValues+ecx*4]
```

The value in EAX now contains the effective address of the first byte of
element 6, counting elements (as usual) from 0.

LEA: The Top-Secret Math Machine

But wait (as they say on late-night TV), there’s more. One of the oddest
instructions, and in some respects the most wonderful instruction, in the
x86 architecture is LEA, Load Effective Address. On the surface, what it does
is simple: It calculates an effective address given between the brackets of
its source operand, and loads that address into any 32-bit general-purpose
register given as its destination operand. Refer back to the previous paragraph
and the MOV instruction that looks up the element with index 6 in the table
ScaleValues. In order to look up the item at index 6, it has to first calculate
the effective address of the item at index 6. This address is then used to access
memory.

What if you’d like to save that address in a register to use it later? That’s
what LEA does. Here’s LEA in action:

```asm
lea ebx,[ScaleValues+ecx*4]
```
What happens here is that the CPU calculates the effective address given inside the brackets, and loads that address into the EBX register. Keep in mind that the individual entries in a table do not have labels and thus cannot be referenced directly. **LEA** enables you to calculate the effective address of any element in a table (or any calculable address at all!) and drop that address in a register.

In itself this is very useful, but **LEA** also has an “off-label” purpose: doing fast math without shifts, adds, or pokey **MUL**. If you remember, there is a calculation in the hexdump1 program that multiplies by three using a shift and an add:

```assembly
mov edx,ecx ; Copy the character counter into edx
shl edx,1 ; Multiply pointer by 2 using left shift
add edx,ecx ; Complete the multiplication X3
```

The preceding works, but look at what we can use that does exactly the same thing:

```assembly
mov edx,ecx ; Copy the character counter into edx
lea edx,[edx*2+edx] ; Multiply edx X 3
```

Not only is this virtually always faster than shifts combined with adds, it’s also clearer from your source code what sort of calculation is actually being done. The fact that what ends up in EDX may not in fact be the legal address of anything is unimportant. **LEA does not try to reference the address it calculates.** It does the math on the stuff inside the brackets and drops it into the destination operand. Job over. Memory is not touched, and the flags are not affected.

Of course, you’re limited to what calculations can be done on effective addresses; but right off the top, you can multiply any GP register by 2, 3, 4, 5, 8, and 9, while tossing in a constant too! It’s not arbitrary math, but multiplying by 2, 3, 4, 5, 8, and 9 comes up regularly in assembly work, and you can combine **LEA** with shifts and adds to do more complex math and “fill in the holes.” You can also use multiple **LEA** instructions in a row. Two consecutive **LEA** instructions can multiple a value by 10, which is useful indeed:

```assembly
lea ebx,[ebx*2] ; Multiply ebx X 2
lea ebx,[ebx*4+ebx] ; Multiply ebx X 5 for a total of X 10
```

Some people consider this use of **LEA** a scurvy trick, but in all the years I’ve worked in x86 assembly I’ve never seen a downside. Before throwing five or six instructions into the pot to cook up a particular multiplication, see if two or three **LEA**s can do it instead. **LEA** does its work in one machine cycle, and x86 math doesn’t get any faster than that!
The Burden of 16-Bit Registers

There’s a slightly dark flip side to protected mode’s graduation to 32-bit registers: Using the 16-bit general-purpose registers AX, BX, CX, DX, SP, BP, SI, and DI will slow you down. Now that 32-bit registers rule, making use of the 16-bit registers is considered a special case that adds to the size of the opcodes that the assembler generates, slowing your program code down. Now, note well that by “use” I mean explicitly reference in your source code. The AX register, for example, is still there inside the silicon of the CPU (as part of the larger EAX register), and simply placing data there won’t slow you down. You just can’t place data in AX by using “AX” as an operand in an opcode and not slow down. This syntax generates a slow opcode:

```
mov ax, 542
```

You can do the same thing as follows, and the opcode that NASM generates will execute much more quickly:

```
mov eax, 542
```

I haven’t mentioned this until now because I consider it an advanced topic: You have to walk before you run, and trying to optimize your code before you fully understand what makes code fast and what makes code slow is a proven recipe for confusion and disappointment. A scattering of references to the 16-bit registers in a program will not make the program significantly slower. What you want to avoid is using 16-bit register references inside a tight loop, where the loop will be executed thousands or tens of thousands of times. (Or more!) In some circumstances, both the 8-bit and 16-bit registers are absolutely necessary—for example, when writing 8-bit or 16-bit values to memory. NASM will not let you do this:

```
mov byte [ebx], eax
```

The `BYTE` qualifier makes the first operand an 8-bit operand, and NASM will complain that there is a “mismatch in operand size.” If you need to write an isolated 8-bit value (like an ASCII character) into memory, you need to put the character in one of the 8-bit registers, like this:

```
mov byte [ebx], al
```

That generates a (moderately) slower opcode, but there’s no getting around it. Keep in mind, with modern CPUs especially, that code performance of individual opcodes is swamped by other CPU machinery like cache, hyper-threading, prefetch, and so on. In general, statistical terms, using 32-bit registers...
makes it more likely that your code will run faster, but a scattering of 16-bit or 8-bit register references will not make a huge difference except in certain cases (like within tight loops) and even then, the performance hit is difficult to predict and almost impossible to quantify.

Put simply: use 32-bit registers wherever you can, but don’t agonize over it.

Character Table Translation

There is a type of table lookup that is (or perhaps was) so common that Intel’s engineers baked a separate instruction into the x86 architecture for it. The type of table lookup is what I was alluding to toward the end of Chapter 8: character conversion. In the early 1980s I needed to convert character sets in various ways, the simplest of which was forcing all lowercase characters to uppercase. And in Chapter 8 we built a simple program that went through a file one buffer at a time, bringing in characters, converting all lowercase characters to uppercase, and then writing them all back out again to a new file.

The conversion itself was simple: by relying on the ASCII chart for the relationship between all uppercase characters and their associated lowercase characters, we could convert a lowercase character to uppercase by simply subtracting 20h (32) from the character. That’s reliable, but in a sense a sort of special case. It just so happens that ASCII lowercase characters are always 32 higher on the chart than uppercase characters. What do you do if you need to convert all “vertical bar” (ASCII 124) characters to exclamation points? (I had to do this once because one of the knucklehead mainframes couldn’t digest vertical bars.) You can write special code for each individual case that you have to deal with ...

... or you can use a translation table.

Translation Tables

A translation table is a special type of table, and it works the following way: you set up a table of values, with one entry for every possible value that must be translated. A number (or a character, treated as a number) is used as an index into the table. At the index position in the table is a value that is used to replace the original value that was used as the index. In short, the original value indexes into the table and finds a new value that replaces the original value, thus translating the old value to a new one.

We’ve done this once before, in the hexdump1.asm program in Listing 9-1. Recall the Digits table:

Digits: db "0123456789ABCDEF"
This is a translation table, though I didn’t call it that at the time. The idea, if you recall, was to separate the two 4-bit halves of an 8-bit byte, and convert those 4-bit values into ASCII characters representing hexadecimal digits. The focus at the time was separating the bytes into two nybbles via bitwise logical operations, but translation was going on there as well.

The translation was accomplished by these three instructions:

```
mov al,byte [esi+ecx] ; Put a byte from the input buffer into al
and al,0Fh ; Mask out all but the low nybble
mov al,byte [Digits+eax] ; Look up the char equivalent of nybble
```

The first instruction loads a byte from the input buffer into the 8-bit AL register. The second instruction masks out all but the low nybble of AL. The third instruction does a memory fetch: It uses the value in AL to index into the Digits table, and brings back whatever value was in the ALth entry in the table. (This has to be done using EAX between the brackets, because AL cannot take part in effective address calculations. Just remember that AL is the lowest-order byte in the EAX register.) If AL held 0, then the effective address calculation added 0 to the address of Digits, bringing back the 0th table entry, which is the ASCII character for 0. If AL held 5, then effective address calculation added 5 to the address of Digits, bringing back the fifth table entry, which is the ASCII character for 5. And so it would go, for all 16 possible values that may be expressed in a 4-bit nibble. Basically, the code is used to translate a number to its corresponding ASCII character.

There are only 16 possible hexadecimal digits, so the conversion table in hexdump1 only needs to be 16 bytes long. A byte contains enough bits to represent 256 different values, so if we’re going to translate byte-size values, we need a table with 256 entries. Technically, the ASCII character set only uses the first 128 values, but as I described earlier in this book, the “high” 128 values have often been assigned to special characters such as non-English letters, “box-draw” characters, mathematical symbols, and so on. One common use of character translation is to convert any characters with values higher than 128 to something lower than 128, to avoid havoc in older systems that can’t deal with extended ASCII values.

Such a table is easy enough to define in an assembly language program:

```
UpCase:  
db  20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 09h, 0Ah, 20h, 20h, 20h, 20h, 20h  
db  20h, 20h  
db  20h, 21h, 22h, 23h, 24h, 25h, 26h, 27h, 28h, 29h, 2Ah, 2Bh, 2Ch, 2Dh, 2Eh, 2Fh  
db  30h, 31h, 32h, 33h, 34h, 35h, 36h, 37h, 38h, 39h, 3Ah, 3Bh, 3Ch, 3Dh, 3Eh, 3Fh  
db  40h, 41h, 42h, 43h, 44h, 45h, 46h, 47h, 48h, 49h, 4Ah, 4Bh, 4Ch, 4Dh, 4 Eh, 4Fh  
db  50h, 51h, 52h, 53h, 54h, 55h, 56h, 57h, 58h, 59h, 5Ah, 5Bh, 5Ch, 5Dh,  5 Eh, 5Fh  
db  60h, 61h, 62h, 63h, 64h, 65h, 66h, 67h, 68h, 69h, 6Ah, 6Bh, 6Ch, 6Dh,  6 Eh, 6Fh  
db  70h, 71h, 72h, 73h, 74h, 75h, 76h, 77h, 78h, 79h, 7Ah, 7Bh, 7Ch, 7Dh,  7 Eh, 7Fh
```
The `UpCase` table is defined in 16 lines of 16 separate hexadecimal values. The fact that it’s split across 16 lines is purely for readability on the screen or printed page and does not affect the binary table that NASM generates in the output `.o` file. Once it’s in binary, it’s 256 8-bit values in a row.

A quick syntactic note here: When defining tables (or any data structure containing multiple predefined values), commas are used to separate values within a single definition. There is no need for commas at the end of the lines of the DB definitions in the table. Each DB definition is separate and independent, but because they are adjacent in memory, we can treat the 16 DB definitions as a single table.

Any translation table can be thought of as expressing one or more “rules” governing what happens during the translation process. The `UpCase` table shown above expresses these translation rules:

- All lowercase ASCII characters are translated to uppercase.
- All printable ASCII characters less than 127 that are not lowercase are translated to themselves. (They’re not precisely “left alone,” but translated to the same characters.)
- All “high” character values from 127 through 255 are translated to the ASCII space character (32, or 20h.)
- All non-printable ASCII characters (basically, values 0–31, plus 127) are translated to spaces except for values 9 and 10.
- Character values 9 and 10 (tab and EOL) are translated as themselves.

Not bad for a single data item, eh? (Just imagine how much work it would be to do all that fussing purely with machine instructions!)

Translating with MOV or XLAT

So how do you use the `UpCase` table? Very simply:

1. Load the character to be translated into AL.
2. Create a memory reference using AL as the base term and `UpCase` as the displacement term, and MOV the byte at the memory reference into AL, replacing the original value used as the base term.
Chapter 9 Bits, Flags, Branches, and Tables 321

The MOV instruction would look like this:

```
mov al, byte [UpCase+al]
```

There’s only one problem: NASM won’t let you do this. The AL register can’t take part in effective address calculations, nor can any of the other 8-bit registers. Enter XLAT.

The XLAT instruction is hard-coded to use certain registers in certain ways. Its two operands are implicit:

- The address of the translation table must be in EBX.
- The character to be translated must be in AL.
- The translated character will be returned in AL, replacing the character originally placed in AL.

With the registers set up in that way, the XLAT instruction is used all by its lonesome:

```
xlat
```

I’ll be honest here: XLAT is less of a win than it used to be. In 32-bit protected mode, the same thing can be done with the following instruction:

```
mov al, byte [UpCase+eax]
```

There’s only one catch: you must clear out any “leftover” values in the high 24 bits of EAX, or you could accidentally index far beyond the bounds of the translation table. The XLAT instruction uses only AL for the index, ignoring whatever else might be in the rest of EAX. Clearing EAX before loading the value to be translated into AL is done with a simple `XOR EAX, EAX` or `MOV EAX, 0`.

In truth, given XLAT’s requirement that it use AL and EBX, it’s a wash, but the larger topic of character translation via tables is really what I’m trying to present here. Listing 9-2 puts it all into action. The program as shown does exactly what the uppercaser2 program in Listing 8-2 does: it forces all lowercase characters in an input file to uppercase and writes them to an output file. I didn’t call it “uppercaser3” because it is a general-purpose character translator. In this particular example, it translates lowercase characters to uppercase, but that’s simply one of the rules that the UpCase table expresses. Change the table, and you change the rules. You can translate any or all of the 256 different values in a byte to any 256 value or values.

I’ve added a second table to the program for you to experiment with. The Custom table expresses these rules:

- All printable ASCII characters less than 127 are translated to themselves. (Again, they’re not precisely “left alone” but translated to the same characters.)
All “high” character values from 127 through 255 are translated to the ASCII space character (32, or 20h).

All non-printable ASCII characters (basically, values 0–31, plus 127) are translated to spaces except for values 9 and 10.

Character values 9 and 10 (tab and EOL) are translated as themselves.

Basically, it leaves all printable characters (plus tab and EOL) alone, and converts all other character values to 20h, the space character. You can substitute the label Custom for UpCase in the program, make changes to the Custom table, and try it out. Convert that pesky vertical bar to an exclamation point. Change all “Z” characters to “Q.” Changing the rules is done by changing the table. The code does not change at all!

Listing 9-2: xlat1.asm

```asm
; Executable name : XLAT1
; Version : 1.0
; Created date : 2/11/2009
; Last update : 4/5/2009
; Author : Jeff Duntemann
; Description : A simple program in assembly for Linux, using NASM 2.05, demonstrating the use of the XLAT instruction to alter text streams.
;
; Build using these commands:
;  nasm -f elf -g -F stabs xlat1.asm
;  ld -o xlat1 xlat1.o
;
SECTION .data ; Section containing initialized data

StatMsg: db "Processing...",10
StatLen: equ $-StatMsg
DoneMsg: db "...done!",10
DoneLen: equ $-DoneMsg

; The following translation table translates all lowercase characters to uppercase. It also translates all non-printable characters to spaces, except for LF and HT.
UpCase:
db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
```

```asm
```
Chapter 9 Bits, Flags, Branches, and Tables 323

Listing 9-2: xlat1.asm (continued)

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

; The following translation table is "stock" in that it translates all
; printable characters as themselves, and converts all non-printable
; characters to spaces except for LF and HT. You can modify this to
; translate anything you want to any character you want.

Custom:

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,09h,0Ah,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,21h,22h,23h,24h,25h,26h,27h,28h,29h,2Ah,2Bh,2Ch,2Dh,2Eh,2Fh

db 30h,31h,32h,33h,34h,35h,36h,37h,38h,39h,3Ah,3Bh,3Ch,3Dh,3Eh,3Fh

db 40h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh

db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,5Bh,5Ch,5Dh,5Eh,5Fh

db 60h,61h,62h,63h,64h,65h,66h,67h,68h,69h,6Ah,6Bh,6Ch,6Dh,6Eh,6Fh

db 70h,71h,72h,73h,74h,75h,76h,77h,78h,79h,7Ah,7Bh,7Ch,7Dh,7Eh,7Fh

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

SECTION .bss ; Section containing uninitialized data

READLEN equ 1024 ; Length of buffer
ReadBuffer: resb READLEN ; Text buffer itself

SECTION .text ; Section containing code

global _start ; Linker needs this to find the entry point!

_start:
 nop ; This no-op keeps gdb happy...

; Display the "I'm working..." message via stderr:
 mov eax,4 ; Specify sys_write call
 mov ebx,2 ; Specify File Descriptor 2: Standard error
 mov ecx,StatMsg ; Pass offset of the message
 mov edx,StatLen ; Pass the length of the message

(continued)
Listing 9-2: xlat1.asm (continued)

```assembly
int 80h       ; Make kernel call

; Read a buffer full of text from stdin:
read:
    mov eax,3    ; Specify sys_read call
    mov ebx,0    ; Specify File Descriptor 0: Standard Input
    mov ecx,ReadBuffer ; Pass offset of the buffer to read to
    mov edx,READLEN ; Pass number of bytes to read at one pass
    int 80h
    mov ebp,eax  ; Copy sys_read return value for safekeeping
    cmp eax,0    ; If eax=0, sys_read reached EOF
    je done      ; Jump If Equal (to 0, from compare)

; Set up the registers for the translate step:
    mov ebx,UpCase ; Place the offset of the table into ebx
    mov edx,ReadBuffer ; Place the offset of the buffer into edx
    mov ecx,ebp ; Place the number of bytes in the buffer into ecx

; Use the xlat instruction to translate the data in the buffer:
; (Note: the commented out instructions do the same work as XLAT;
; un-comment them and then comment out XLAT to try it!
translate:
    ; xor eax,eax     ; Clear high 24 bits of eax
    mov al,byte [edx+ecx] ; Load character into AL for translation
    ; mov al,byte [UpCase+eax] ; Translate character in AL via table
    ; xlat             ; Translate character in AL via table
    mov byte [edx+ecx],al ; Put the translated char back in the buffer
    dec ecx           ; Decrement character count
    jnz translate    ; If there are more chars in the buffer, repeat

; Write the buffer full of translated text to stdout:
write:
    mov eax,4     ; Specify sys_write call
    mov ebx,1     ; Specify File Descriptor 1: Standard output
    mov ecx,ReadBuffer ; Pass offset of the buffer
    mov edx,ebp   ; Pass the # of bytes of data in the buffer
    int 80h       ; Make kernel call
    jmp read      ; Loop back and load another buffer full

; Display the "I'm done" message via stderr:
done:
    mov eax,4     ; Specify sys_write call
    mov ebx,2     ; Specify File Descriptor 2: Standard error
    mov ecx,DoneMsg ; Pass offset of the message
    mov edx,DoneLen ; Pass the length of the message
    int 80h       ; Make kernel call

; All done! Let's end this party:
```

Tables Instead of Calculations

Standardization among computer systems has made character translation a lot less common than it used to be, but translation tables can be extremely useful in other areas. One of them is to perform faster math. Consider the following table:

Squares: db 0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225

No mystery here: *Squares* is a table of the squares of the numbers from 0–15. If you needed the square of 14 in a calculation, you could use `MUL`, which is very slow as instructions go, and requires two GP registers; or you could simply fetch down the result from the *Squares* table:

```
mov ecx,14
mov al,byte [Squares+ecx]
```

Voila! EAX now contains the square of 14. You can do the same trick with `XLAT`, though it requires that you use certain registers. Also remember that `XLAT` is limited to 8-bit quantities. The *Squares* table shown above is as large a squares value table as `XLAT` can use, because the next square value (of 16) is 256, which cannot be expressed in 8 bits.

Making the entries of a squares value lookup table 16 bits in size will enable you to include the squares of all integers up to 255. And if you give each entry in the table 32 bits, you can include the squares of integers up to 65,535—but that would be a very substantial table!

I don’t have the space in this book to go very deeply into floating-point math, but using tables to look up values for things like square roots was once done very frequently. In recent years, the inclusion of math processors right on the CPU makes such techniques a lot less compelling. Still, when confronted with an integer math challenge, you should always keep the possibility of using table lookups somewhere in the corner of your mind.